1 |
HARTUNIAN R A, STEWART G. E. FERGASON S D,et al. Causes and mitigation of radio frequency (RF) blackout during reentry of reusable launch vehicles: ATR-2007(5309)-1[R]. El Segundo: Aerospace Corporation, 2007.
|
2 |
DIX D M. Typical values of plasma parameters around a conical re-entry vehicle: AD295429[R]. El Segundo: Aerospace Corporation, 1962.
|
3 |
CLOSE S. Scattering characteristics of high-resolution meteor head echoes detected at multiple frequencies[J]. Journal of Geophysical Research, 2002, 107( A10): 1295.
|
4 |
KERO J, SZASZ C, WANNBERG G, et al. On the meteoric head echo radar cross section angular dependence[J]. Geophysical Research Letters, 2008, 35( 7): 154- 162..
|
5 |
BAI B W, LI X P, LIU Y M, et al. Effects of reentry plasma sheath on the polarization properties of obliquely incident EM waves[J]. IEEE Transactions on Plasma Science, 2014, 42( 10): 3365- 3372.
|
6 |
SHA Y X, ZHANG H L, GUO X Y, et al. Analyses of electromagnetic properties of a hypersonic object with plasma sheath[J]. IEEE Transactions on Antennas and Propagation, 2019, 67( 4): 2470- 2481.
|
7 |
KOJIMA T, HIGASHI T, ITAKURA K. Reflection and transmission of electromagnetic waves obliquely incident upon a moving compressible plasma slab[J]. IEEE Transactions on Antennas and Propagation, 1972, 20( 3): 398- 400.
|
8 |
LAROUSSI M, ROTH J R. Numerical calculation of the reflection, absorption, and transmission of microwaves by a nonuniform plasma slab[J]. IEEE Transactions on Plasma Science, 1993, 21( 4): 366- 372.
|
9 |
CHEN X Y, LI K X, LIU Y Y, et al. Study of the influence of time-varying plasma sheath on radar echo signal[J]. IEEE Transactions on Plasma Science, 2017, 45( 12): 3166- 3176.
|
10 |
罗春荣, 丁昌林, 段利兵. “十二五”规划教材: 电动力学[M]. 北京: 电子工业出版社, 2016: 150- 176.
|
|
LUO C R, DING C L, DUAN L B. 12th Five-Year Plan Textbooks: Electrodynamics[M]. Beijing: Publishing House of Electronics Industry, 2016: 150- 176.
|
11 |
曹昌祺. 现代物理学基础丛书: 经典电动力学[M]. 中国北京: 科学出版社, 2009: 167- 180.
|
|
CAO C Q. Basic series of modern physics: Classical electrodynamics[M]. Beijing: Science Press, 2009: 167- 180.
|
12 |
LIU S H, GUO L X. Analyzing the electromagnetic scattering characteristics for 3-D inhomogeneous plasma sheath based on PO method[J]. IEEE Transactions on Plasma Science, 2016, 44( 11): 2838- 2843.
|
13 |
ZHANG X, LIU Y M, BAI B W, et al. Establishment of a wideband radar scattering center model of a plasma sheath[J]. IEEE Access, 20197: 140402- 140410.
|
14 |
DING Y, BAI B W, GAO H J, et al. An analysis of radar detection on a plasma sheath covered reentry target[J]. IEEE Transactions on Aerospace and Electronic Systems, 2021, 57( 6): 4255- 4268.
|
15 |
DING Y, BAI B W, GAO H J, et al. Method of detecting a target enveloped by a plasma sheath based on Doppler frequency compensation[J]. IEEE Transactions on Plasma Science, 2020, 48( 12): 4103- 4111.
|
16 |
YAO S, LIU Y H, JIANG Y X, et al. An improved signal-dependent quadratic time-frequency distribution using regional compact kernels for analysis of nonstationary multicomponent LFM signals[J]. Digital Signal Processing, 2021, 116: 103131.
|
17 |
GU T, LIAO G S, LI Y C, et al. Parameter estimate of multi-component LFM signals based on GAPCK[J]. Digital Signal Processing, 2020, 100: 102683.
|
18 |
WAN J, ZHOU Y, ZHANG L R, et al. A Doppler ambiguity tolerated method for radar sensor maneuvering target focusing and detection[J]. IEEE Sensors Journal, 2019, 19( 16): 6691- 6704.
|
19 |
陈伟芳, 赵文文. 稀薄气体动力矩方法及数值模拟[M]. 北京: 科学出版社, 2017.
|
|
CHEN W F, ZHAO W W. Rarefied gas dynamic moment method and numerical simulation[M]. Beijing: Science Press, 2017.
|
20 |
PERRY R P, DIPIETRO R C, FANTE R L. Coherent integration with range migration using keystone formatting[C]∥ 2007 IEEE Radar Conference. Piscataway: IEEE Press, 2007: 863- 868.
|
21 |
ZHANG S S, ZENG T, LONG T, et al. Dim target detection based on keystone transform[C]∥ IEEE International Radar Conference. Piscataway: IEEE Press, 2005: 889- 894.
|
22 |
SKOLNIK M I. Radar handbook[M]. 2nd ed. New York: McGraw-Hill, 1990.
|