[1] DUTTA R, SUN L, PACK D. Adecentralized formation and network connectivity tracking controller for multiple unmanned systems[J]. IEEE Transactions on Control Systems Technology, 2018, 26(6): 2206-2213. [2] SHAKOURI A. On theimpulsive formation control of spacecraft under path constraints[J]. IEEE Transactions on Aerospace and Electronic Systems, 2019, 55(6): 3292-3302. [3] 王祥科, 李迅, 郑志强. 多智能体系统编队控制相关问题研究综述[J]. 控制与决策, 2013, 28(11): 1601-1613. WANG X K, LI X, ZHENG Z Q. Survey of developments on multi-agent formation control related problems[J]. Control and Decision, 2013, 28(11): 1601-1613(in Chinese). [4] VAN DEN BROEK T H A, VAN DE WOUW N, NIJMEIJER H. Formation control of unicycle mobile robots: A virtual structure approach[C]//Proceedings of the 48 h IEEE Conference on Decision and Control(CDC) Held Jointly with 200928th Chinese Control Conference. Piscataway: IEEE Press, 2009: 8328-8333. [5] COOGAN S, ARCAK M. Scaling the size of a formation using relative position feedback[J]. Automatica, 2012, 48(10): 2677-2685. [6] BABAZADEH R, SELMIC R. Distance-based multiagent formation control with energy constraints using SDRE[J]. IEEE Transactions on Aerospace and Electronic Systems, 2020, 56(1): 41-56. [7] OH K K, PARK M C, AHN H S. A survey of multi-agent formation control[J]. Automatica, 2015, 53: 424-440. [8] HOU Y, YU C B. Distance-based control of formations with hybrid communication topology[J]. International Journal of Robust and Nonlinear Control, 2018, 28(3): 881-900. [9] ANDERSON B D O, YU C B, FIDAN B, et al. Rigid graph control architectures for autonomous formations[J]. IEEE Control Systems Magazine, 2008, 28(6): 48-63. [10] HENDRICKX J M, ANDERSON B D O, DELVENNE J C, et al. Directed graphs for the analysis of rigidity andpersistence in autonomous agent systems[J]. International Journal of Robust and Nonlinear Control, 2007, 17(10-11): 960-981. [11] MOU S S, BELABBAS M A, MORSE A S, et al. Undirectedrigid formations are problematic[J]. IEEE Transactions on Automatic Control, 2016, 61(10): 2821-2836. [12] 周绍磊, 祁亚辉, 张雷, 等. 切换拓扑下无人机集群系统时变编队控制[J]. 航空学报, 2017, 38(4): 320452. ZHOU S L, QI Y H, ZHANG L, et al. Time-varying formation control of UAV swarm systems with switching topologies[J]. Acta Aeronautica et Astronautica Sinica, 2017, 38(4): 320452(in Chinese). [13] 董文奇, 何锋. 大规模UAV编队信息交互拓扑的分级分布式生成[J]. 航空学报, 2021, 42(6): 324380. DONG W Q, HE F. Hierarchical and distributed generation of information interaction topology for large scale UAV formation[J]. Acta Aeronautica et Astronautica Sinica, 2021, 42(6): 324380(in Chinese). [14] SMITH B S, EGERSTEDT M, HOWARD A. Automaticgeneration of persistent formations for multi-agent networks under range constraints[J]. Mobile Networks and Applications, 2009, 14(3): 322-335. [15] LUO X Y, SHAO S K, ZHANG Y Y, et al. Generation of minimally persistent circle formation for a multi-agent system[J]. Chinese Physics B, 2014, 23(2):028901. [16] YU D X, CHEN C L P. Automaticleader-follower persistent formation generation with minimum agent-movement in various switching topologies[J]. IEEE Transactions on Cybernetics, 2020, 50(4): 1569-1581. [17] LUO X Y, LI S B, GUAN X P. Automatic generation ofMin-weighted persistent formations[J]. Chinese Physics B, 2009, 18(8): 3104-3114. [18] 罗小元, 杨帆, 李绍宝, 等. 多智能体系统的最优持久编队生成策略[J]. 自动化学报, 2014, 40(7): 1311-1319. LUO X Y, YANG F, LI S B, et al. Generation ofoptimally persistent formation for multi-agent systems[J]. Acta Automatica Sinica, 2014, 40(7): 1311-1319(in Chinese). [19] WANG G Q, LUO H, HU X X. Generation of optimal persistent formations for heterogeneous multi-agent systems with a leader constraint[J]. Chinese Physics B,2018, 27(2): 028901. [20] 王金然, 罗小元, 杨帆, 等. 三维最优持久编队拓扑生成策略[J]. 自动化学报, 2015, 41(6): 1123-1130. WANG J R, LUO X Y, YANG F, et al. Generationstrategy of optimal persistent formation topology in 3D space[J]. Acta Automatica Sinica, 2015, 41(6): 1123-1130(in Chinese). [21] WANG G Q, LUO H, HU X X, et al. Communication topology optimization for three-dimensional persistent formation with leader constraint[J]. Optimization Letters, 2021, 15(2): 513-535. [22] LUO X, LIU D, GUAN X, et al. Flocking in target pursuit for multi-agent systems with partial informed agents[J]. IET Control Theory & Applications, 2012, 6(4): 560. [23] SUN H Y, SONG G M, WEI Z, et al. Energy-optimized consensus formation control for the time-delayed bilateral teleoperation system of UAVs[J]. International Journal of Aerospace Engineering, 2018: 1-22. [24] YU C B, HENDRICKX J M, FIDAN B, et al. Three and higher dimensional autonomous formations: Rigidity, persistence and structural persistence[J]. Automatica, 2007, 43(3): 387-402. [25] 罗小元, 闫彦霖, 郝丽娟, 等. 基于最优刚性图的能量有效分布式拓扑控制算法[J]. 通信学报, 2013, 34(12): 1-10. LUO X Y, YAN Y L, HAO L J, et al. Based on optimally rigid graph energy efficient distributed topology control algorithm[J]. Journal on Communications, 2013, 34(12): 1-10(in Chinese). [26] 罗小元, 王慧彬, 王金然, 等. 基于最优刚性图的链路质量与能量的拓扑控制算法[J]. 控制与决策, 2015, 30(11): 2055-2060. LUO X Y, WANG H B, WANG J R, et al. Link quality and energy topology control algorithm based on optimally rigid graph[J]. Control and Decision, 2015, 30(11): 2055-2060(in Chinese). |