[1] TITTERTON D H. A review of the development of optical countermeasures[C]//SPIE Proceedings. Bellingham:SPIE, 2004:5615. [2] 邹涛, 王超哲, 童中翔, 等. 箔片型红外面源诱饵扩散规律[J]. 航空学报, 2016, 37(9):2634-2645. ZOU T, WANG C Z, TONG Z X, et al. Diffusion rule of foil-surface-type infrared decoy[J]. Acta Aeronautica et Astronautica Sinica, 2016, 37(9):2634-2645(in Chinese). [3] REEVES W T. Particle systems-A technique for modeling a class of fuzzy objects[J]. Computer Graphics, 1983, 17(3):359-376. [4] INAKAGE M. A simple model of flames[C]//CG International'90. Tokyo:Springer Japan, 1990:71-81. [5] NGUYEN D Q, FEDKIW R, JENSEN H W. Physically based modeling and animation of fire[J]. ACM Transactions on Graphics, 2002, 21(3):721-728. [6] REEVES W T. Particle systems-A technique for modeling a class of fuzzy objects[J]. ACM Transactions on Graphics, 1983, 2(2):359-376. [7] UNBESCHEIDEN M, TREMBILSKI A. Cloud simulation in virtual environments[C]//Proceedings of Virtual Reality Annual International Symposium. Piscataway:IEEE Press, 1998:98-104. [8] 高辉, 赵松庆, 吴根水, 等. 基于电阻阵列的红外场景生成技术[J]. 航空学报, 2015, 36(9):2815-2827. GAO H, ZHAO S Q, WU G S, et al. Infrared radiation scene generation technology based on resistor array[J]. Acta Aeronautica et Astronautica Sinica, 2015, 36(9):2815-2827(in Chinese). [9] MA D L, ZHAO Y P, QIAO Y H, et al. Effects of relative thickness on aerodynamic characteristics of air-foil at a low Reynolds number[J]. Chinese Journal of Aeronautics, 2015, 22(4):1003-1015. [10] WU X, ZHANG J Q, HUANG X, et al. GPU-accelerated real-time IR smoke screen simulation and assessment of its obscuration[J]. Infrared Physics & Technology, 2012, 55(1):150-155. [11] ZHANG Z D, YANG C L, ZHANG Y. Research on radiation characteristic of infrared decoy based on DPM[C]//Industrial Electronics & Applications. Piscataway:IEEE Press, 2015:7334290. [12] 杨春玲, 张振东, 刘国成. 药剂半径对红外诱饵弹辐射特性影响[J]. 红外与激光工程, 2016, 45(S1):23-28. YANG C L, ZHANG Z D, LIU G C. Influence of particle radius of composition on radiation characteristics of infrared decoy[J]. Infrared and Laser Engineering, 2016, 45(S1):23-28(in Chinese). [13] ZHANG Z D, YANG C L, ZHANG Y, et al. Dynamic modeling method for infrared smoke based on enhanced discrete phase model[J]. Infrared Physics & Technology, 2018, 89:315-324. [14] KOCH E C. Pyrotechnic countermeasures:Ⅱ. Advanced aerial infrared countermeasures[J]. Propellants Explosives Pyrotechnics, 2010, 31(1):3-19. [15] KOCH E C. Review on pyrotechnic aerial infrared decoys[J]. Propellants Explosives Pyrotechnics, 2001, 26(1):3-11. [16] KOCH E C. 2006-2008 annual review on aerial infra-red decoy flares[J]. Propellants Explosives Pyrotechnics, 2009, 34(1):6-12. [17] KOCH E C. Metal-fluorocarbon based energetic materials[M]. Weinheim:Wiley-VCH Verlag GmbH & Co. KGaA, 2012. [18] KOCH E C. Metal-fluorocarbon-pyrolants IV:Thermochemical and combustion behaviour of magnesium/Teflon/Viton (MTV)[J]. Propellants Explosives Pyrotechnics, 2002, 27(6):340-351. [19] BLANQUART G, PEPIOT-DESJARDINS P, PITSCH H. Chemical mechanism for high temperature combustion of engine relevant fuels with emphasis on soot precursors[J]. Combustion and Flame, 2009, 156(3):588-607. [20] CAI L, PITSCH H. Optimized chemical mechanism for combustion of gasoline surrogate fuels[J]. Combustion and Flame, 2015, 162(5):1623-1637. [21] WAITE B M, HILLBRAND M, FOSTER H G. Reduction of aggressive behavior after removal of Music Television[J]. Psychiatric Services, 1992, 43(2):173-175. [22] KOCH E C. Metal/fluorocarbon Pyrolants:VI. Combustion behaviour and radiation properties of magnesium/poly(carbon monofluoride) pyrolant[J]. Propellants Explosives Pyrotechnics, 2005, 30(3):209-215. [23] KOCH E C, HAHMA A, KLAPÖTKE T, et al. Metal-fluoro-carbon pyrolants:XI. Radiometric performance of pyrolants based on magnesium, perfluorinated tetrazolates, and Viton A[J]. Propellants, Explosives, Pyrotechnics, 2010, 35(3):248-253. [24] KOCH E C, KLAPOETKE T M, RADIES H, et al. Metal-fluorocarbon pyrolants. XⅡ:Calcium salts of 5-perfluoroalkylated tetrazoles-Synthesis characterization and performance evaluation as oxidizers in ternary mixtures with magnesium and VitonTM[J]. Ztschrift fur Naturforschung B, 2011, 66(4):378-386. [25] KOCH E C, HAHMA A, WEISER V, et al. Metal-fluorocarbon pyrolants. XⅢ:High performance infrared decoy flare compositions based on MgB2 and Mg2Si and polytetrafluoroethylene/Viton®[J]. Propellants, Explosives, Pyrotechnics, 2012, 37(4):432-438. [26] 张文华, 王星, 张凤鸣, 等. 非均匀热气体红外辐射特性计算新方法[J]. 红外与激光工程, 2008, 37(4):573-578. ZHANG W H, WANG X, ZHANG F M, et al. New calculation method for infrared radiation characteristics of non-uniform hot gas[J]. Infrared and Laser Engineering, 2008, 37(4):573-578(in Chinese). [27] 林长津. Mg/PTFE基烟火药激光点火及燃烧辐射特性研究[D]. 南京:南京理工大学, 2018. LIN C J. Study on laser ignition and combustion radiation characteristic of Mg/PTFE based pyrolant[D]. Nanjing:Nanjing University of Science and Technology, 2018(in Chinese). [28] LABONTÉ G, DECK W C. Infrared target-flare discrimination using a ZISC hardware neural network[J]. Journal of Real-Time Image Processing, 2010, 5(1):11-32. |