[1] CUMMING I G, WONG F. Digital processing of synthetic aperture radar data:Algorithms and implementation[M]. Norwood, MA:Artech House, 2005:1-10. [2] DING Z, LIU L, TAO Z, et al. Improved motion compensation approach for squint airborne SAR[J]. IEEE Transactions on Geoscience and Remote Sensing, 2013, 51(8):4378-4387. [3] 毛新华, 朱岱寅, 朱兆达. 一种超高分辨率机载聚束SAR两维自聚焦算法[J]. 航空学报, 2012, 33(7):1289-1295. MAO X H, ZHU D Y, ZHU Z D, 2-D auto focus algorithm for ultra-high resolution airborne spotlight SAR imaging[J]. Acta Aeronautica et Astronautica Sinica, 2012, 33(7):1289-1295(in Chinese). [4] DAVISON G W, CUMMING I G. Signal properties of spaceborne squint-mode SAR[J]. IEEE Transactions on Geoscience and Remote Sensing, 1997, 35(3):611-617. [5] NATROSHVILI K, LOFFELD O, NIES H, et al. Focusing of general bistatic SAR configuration data with 2-D inverse scaled FFT[J]. IEEE Transactions on Geoscience and Remote Sensing, 2006, 44(10):2718-2727. [6] NEO Y, WONG F, CUMMING I. Processing of azimuth-invariant bistatic SAR data using the range doppler algorithm[J]. IEEE Transactions on Geoscience and Remote Sensing, 2008, 46(1):14-21. [7] WANG Y, WANG J, ZHANG J, et al. Research on the resolution of bistatic SAR with geostationary illuminator and LEO receiver[C]//Proceedings of International Asia-pacific Conference on Synthetic Aperture Radar, 2011:174-177. [8] YOUNIS M, METZIG R, KRIEGER G. Performance prediction of a phase synchronization link for bistatic SAR[J]. IEEE Geoscience and Remote Sensing Letter, 2006, 3(3):429-433. [9] ESPETER T, WALTERSCHIEID I, KLARE J, et al. Bistatic forward-looking SAR:Results of a spaceborne-airborne experiment[J]. IEEE Geoscience and Remote Sensing Letter, 2011, 8(4):765-768. [10] SUN G C, XING M D, WANG Y, et al. A 2-D space-variant chirp scaling algorithm based on the RCM equalization and subband synthesis to process geosynchronous SAR data[J]. IEEE Transactions on Geoscience and Remote Sensing, 2014, 52(8):4868-4880. [11] HU C, LONG T, LIU Z, et al. An improved frequency domain focusing method in geosynchronous SAR[J]. IEEE Transactions on Geoscience and Remote Sensing, 2014, 52(9):5514-5528. [12] MOREIRA A, PRATS-IRAOLA P, YOUNIS M, et al. A tutorial on synthetic aperture radar[J]. IEEE Geoscience and Remote Sensing Magazine, 2013, 1(1):6-43. [13] MOREIRA A, KRIEGER G, HAJNSEK I, et al. Tandem-L:A highly innovative bistatic SAR mission for global observation of dynamic processes on the Earth's surface[J]. IEEE Geoscience and Remote Sensing Magazine, 2015, 3(2):8-23. [14] 汤子跃, 张守融. 双站合成孔径雷达系统原理[M]. 北京:科学出版社, 2003:35-69. TANG Z Y, ZHANG S R. Principle guidance of bistatic synthetic aperture radar system[M]. Beijing:Science Press, 2003:35-69(in Chinese). [15] CARDILLO G P. On the use of gradient to determine bistatic SAR resolution[C]//Proceedings of Antennas & Propagation Society International Symposium. Piscataway, NJ:IEEE Press, 1990, 2:1032-1035. [16] CEHN J L, SUN G C, WANG Y, et al. An analytical resolution evaluation approach for bistatic GEOSAR based on local feature of ambiguity function[J]. IEEE Transactions on Geoscience and Remote Sensing, 2018, 56(14):2159-2169. [17] XIE H T, AN D X, HUANG X T, et al. Research on spatial resolution of one-stationary bistatic ultrahigh frequency ultrawidebeam-ultrawideband SAR based on scattering target wavenumber domain support[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2015, 8(4):1782-1798. [18] ESPETER T, WALTERSCHEID I, KLARE J, et al. Bistatic forward-looking SAR:Results of a spaceborne-airborne experiment[J]. IEEE Geoscience and Remote Sensing Letter, 2011, 8(4):765-768. [19] PRENTISS N R. Depth of field for SAR with aircraft acceleration[J]. IEEE Transactions on Aerospace and Electronic Systems, 1984, 20(5):603-616. [20] MOCCIA A, RENGA A. Spatial resolution of bistatic synthetic aperture radar:Impact of acquisition geometry on imaging performance[J]. IEEE Transactions on Geoscience and Remote Sensing, 2011, 49(10):3487-3503. [21] SOUMEKH M. Synthetic aperture radar signal processing with MATLAB algorithm[M]. New York:Wiley, 1999:165-175. [22] DESAI M D, JENKINS W K. Convelutional backprojection image reconstruction for spotlight mode synthetic aperture radar[J]. IEEE Transactions on Image Processing, 1992, 1(4):505-517. [23] 李浩林, 陈露露, 张磊, 等. 一种适用于快速分解后向投影聚束SAR成像的自聚焦方法[J]. 航空学报, 2014, 35(7):2011-2018. LI H L, CHEN L L, ZHANG L, et al. An autofocus method for spotlight SAR imagery created by fast factorized back-projection[J]. Acta Aeronautica et Astronautica Sinica, 2014, 35(7):2011-2018(in Chinese). [24] ULANDER L M H, HELLSTEN H, STENSTRÖM G. Synthetic aperture radar processing using fast factorized back-projection[J]. IEEE Transactions on Aerospace and Electronic Systems, 2003, 39(3):760-776. |