[1] SAEED F, SELIG M S, BRAGG M B. Hybrid airfoil design method to simulation full-scale ice accretion throughout g given α range[J]. Journal of Aircraft, 1998, 35(2):233-239. [2] SAEED F, SELIG M S, BRAGG M B. Hybrid airfoil design procedure validation for full-scale ice accretion simulation[J]. Journal of Aircraft, 1998, 36(5):769-776. [3] FUJIWARA G E C, WIBERG B D, WOODARD B S, et al. 3D swept hybrid wing design method for icing wind tunnel tests:AIAA-2014-2616[R]. Reston, VA:AIAA, 2014. [4] SAEED F, SELIG M S, BRAGG M B. Design of subscale airfoils with full-scale leading edges for ice accretion testing[J]. Journal of Aircraft, 1997, 34(1):94-100. [5] SAEED F. Hybrid airfoil design methods for full-scale ice accretion simulation[D]. Chicago:University of Illinois, 1999. [6] MORTONSON A J. Use of hybrid airfoil design in icing wind tunnel tests of large scale swept wings[D]. Illinois:University of Illinois, 2012. [7] FUJIWARA G E C, BRAGG M B. Method for designing hybrid airfoils for icing wind-tunnel tests[J/OL]. Journal of Aircraft, 2018.(2018-08-20)[2018-09-13]. https://doi.org/10.2514/1.C034987. [8] GUO T, ZHU C X, ZHU C L. Hybrid airfoil design for full-scale ice accretion test[J]. Transactions of Nanjing University of Aeronautics & Astronautics, 2013, 30(2):139-144. [9] 赵克良, 陆志良, 丁力, 等. 用于结冰风洞试验的混合翼设计[J]. 空气动力学学报, 2013, 31(6):718-722. ZHAO K L, LU Z L, DING L, et al. A design method of hybrid airfoil applied in icing wind tunnel test[J]. Acta Aerodynamica Sinica, 2013, 31(6):718-722(in Chinese). [10] NEUHART D H, PENDERGRAFT O C. A water tunnel study of Gurney flaps:NASA TM 4071[R]. Washington, D.C.:NASA, 1988. [11] GIGUERE P, DUMAS G, LEMAY J. Gurney flap scaling for optimum lift-to-drag ratio[J]. AIAA Journal, 1997:35(12):1888-1890. [12] MYOSE R, HERON I, PAPADAKIS M. Effect of Gurney flaps on a NACA0011 airfoil:AIAA-1996-0059[R]. Reston, VA:AIAA, 1996. [13] MYOSE R, PAPADAKIS M, HERON I. Gurney flap experiments on airfoils, wings, and reflection plane model[J]. Journal of Aircraft, 1998:35(2):206-211. [14] 刘沛清, 杨硕. 格尼襟翼对某型客机流动控制数值模拟[J]. 航空学报, 2012, 33(9):1616-1622. LIU P Q, YANG S. Numerical simulation of flow control over a certain aircraft with Gurney flaps[J]. Acta Aeronautica et Astronautica Sinica, 2012, 33(9):1616-1622(in Chinese). [15] 杨炯, 张维智, 王元茂, 等. 格尼襟翼对某运输机翼型的增升试验研究[J]. 流体力学实验与测量, 2002, 16(2):25-29. YANG J, ZHANG W Z, WANG Y M, et al. An investigation of increasing lift on large transport by using Gurney flap positioned at the trailing-edge[J]. Experiments and Measurements in Fluid Mechanics, 2002, 16(2):25-29(in Chines). [16] MAUGHMER M D, BRAMESFELD G. Experimental investigation of Gurney flaps[J]. Journal of Aircraft, 2008, 45(6):2061-2067. [17] GRAHAM M, MURADIAN A, TRAUB L W. Experimental study on the effect of gurney flap thickness on airfoil performance[J]. Journal of Aircraft, 2018, 55(2):897-904. [18] FUJIWARA G E C, WOODARD B S, WIBERG B D, et al. A hybrid airfoil design method for icing wind tunnel tests:AIAA-2013-2826[R]. Reston, VA:AIAA, 2013. [19] DOT/FAA/AR. Report of the 12A working group on determination of critical ice shapes for the certification of aircraft:DOT/FAA/AR-00-37[R]. 2000. [20] WEIGHT W B, RUTKOWSKI A. Validation results for LEWICE2. 0:NASA/CR-1999-208690[R]. Washington, D.C.:NASA, 1999. |