航空学报 > 2017, Vol. 38 Issue (1): 220313-220313   doi: 10.7527/S1000-6893.2016.0207

压电纤维复合材料驱动的机翼动态形状控制

王晓明1, 周文雅2, 吴志刚1,2   

  1. 1. 大连理工大学 工程力学系 工业装备结构分析国家重点实验室, 大连 116024;
    2. 大连理工大学 航空航天学院, 大连 116024
  • 收稿日期:2016-04-11 修回日期:2016-07-06 出版日期:2017-01-15 发布日期:2016-07-21
  • 通讯作者: 周文雅,E-mail:zwy@dlut.edu.cn E-mail:zwy@dlut.edu.cn
  • 基金资助:

    国家自然科学基金(11432010,11502041)

Dynamic shape control of wings using piezoelectric fiber composite materials

WANG Xiaoming1, ZHOU Wenya2, WU Zhigang1,2   

  1. 1. State Key Laboratory of Structural Analysis for Industrial Equipment, Department of Engineering Mechanics, Dalian University of Technology, Dalian 116024, China;
    2. School of Aeronautics and Astronautics, Dalian University of Technology, Dalian 116024, China
  • Received:2016-04-11 Revised:2016-07-06 Online:2017-01-15 Published:2016-07-21
  • Supported by:

    National Natural Science Foundation of China (11432010, 11502041)

摘要:

利用压电材料实现柔性机翼的主动形状控制,能够有效提高机翼结构效率和气动性能;要实现连续、光滑的高精确形状控制效果,机翼变形过程必须满足一定的动态要求。本文利用在上下翼面反对称铺设的新型压电纤维复合材料——宏纤维复合材料(MFC)提供驱动力矩,研究了机翼扭转变形的前馈轨迹跟踪控制。首先建立了机翼结构有限元模型和气动力载荷模型,采用载荷比拟法得到MFC作动器的控制载荷向量,给出了气动弹性控制方程及其状态空间表达形式。为跟踪预设的变形参考轨迹,以跟踪误差的时域积分为目标函数,对MFC作动器的电压加载历程进行了优化设计。结果表明,采用规划后的电压加载历程,机翼气动弹性响应很好地跟踪了预期参考轨迹,实现了连续、光滑的动态形状控制效果,提高了控制精度。

关键词: 柔性机翼, 压电纤维复合材料, 宏纤维复合材料, 气动弹性, 前馈控制, 二次规划

Abstract:

The structure efficiency and aerodynamic performance of flexible wings can be effectively improved with active shape control using piezoelectric materials. In order to realize the effect of continuous smooth dynamic shape control with high precision, some dynamical requirements must be satisfied in shape control process of the wings. In this study, new piezoelectric fiber composite materials-macro fiber composite (MFC), which are laid anti-symmetrically on the top and bottom wing surfaces, are used for actuation to achieve feedforward tracking control of twist motion of the wing. The structural finite element model for the wing and the aerodynamic loads are established. The control input vector for the MFC is obtained using load simulation method. The active aeroelastic equations and the state space representation are presented. In order to track the pre-defined deformation reference trajectory, the voltage profiles for MFC actuators are optimized with time-domain integration of tracking errors being chosen as the objective function. The simulation results show that the aeroelastic responses of the wing follow the prospective reference trajectory well with application of the optimal voltage profiles. Continuous smooth dynamic shape control effect has been realized, and control precision has been improved.

Key words: flexible wings, piezoelectric fiber composite materials, MFC, aeroelasticity, feedforward control, quadratic programming

中图分类号: