航空学报 > 2015, Vol. 36 Issue (10): 3430-3438   doi: 10.7527/S1000-6893.2015.0019

高斯非平稳机动目标波达角模型及跟踪

虞翔, 张建秋   

  1. 复旦大学 电子工程系, 上海 200433
  • 收稿日期:2014-11-26 修回日期:2015-01-13 出版日期:2015-10-15 发布日期:2015-01-30
  • 通讯作者: 张建秋, Tel.: 021-55664227 E-mail: jqzhang@fudan.ac.cn E-mail:jqzhang@fudan.ac.cn
  • 作者简介:虞翔 男, 博士研究生。主要研究方向: 阵列信号处理及应用。 Tel: 021-55664227 E-mail: xiangyu10@fudan.edu.cn;张建秋 男, 博士, 教授, 博士生导师。主要研究方向: 信号处理及其在通信、控制、测量、图像和雷达中的应用。 Tel: 021-55664227 E-mail: jqzhang@fudan.ac.cn
  • 基金资助:

    国家自然科学基金 (61171127)

DOA model and tracking for Gaussian non-stationary maneuvering targets

YU Xiang, ZHANG Jianqiu   

  1. Department of Electronic Engineering, Fudan University, Shanghai 200433, China
  • Received:2014-11-26 Revised:2015-01-13 Online:2015-10-15 Published:2015-01-30
  • Supported by:

    National Natural Science Foundation of China (61171127)

摘要:

在实际的跟踪情况中,由于环境条件、目标反射截面等因素的变化,回波信号的功率会随时间变化,即不满足通常阵列信号处理中对高斯信号作平稳性的假设。针对复杂运动条件下高斯非平稳目标的跟踪问题,提出了一种新的机动目标波达角(DOA)模型。该模型全面地刻画了高斯非平稳机动目标的动态,并将目标的DOA和信号功率作为状态变量进行了联合考虑,同时运用虚拟阵列的表示方法构建了相应的观测方程。对于建立的新模型,最后采用无迹卡尔曼滤波(UKF)的框架完成了整个跟踪算法。分析和仿真结果表明,当高斯非平稳机动目标之间存在长时间相互接近的情况时,新方法仍然可以获得较好的跟踪性能。

关键词: 阵列信号处理, 波达角, 多目标跟踪, 高斯非平稳信号, 虚拟阵列, 无迹卡尔曼滤波

Abstract:

In practical applications, due to the variation of environment, radar cross section and other variable factors, the echo power changes over time, which is inconsistent with the stationary assumption of Gaussian signals in the general array signal processing. To address the tracking problem of Gaussian non-stationary maneuvering targets with complex movements, a new direction-of-arrival (DOA) model is proposed. This model captures the dynamic state of Gaussian non-stationary maneuvering targets completely, considering the DOA and signal power as a joint state vector. Meanwhile, this model utilizes virtual array representing method and constructs the observation equation accordingly. Finally, the unscented Kalman filter (UKF) algorithm is used to complete the whole tracking process. Both analyses and simulation results show that the new method is still able to achieve good tracking performance when the Gaussian non-stationary maneuvering targets are close to each other for a long time.

Key words: array signal processing, direction of arrival, multi-target tracking, Gaussian non-stationary signal, virtual array, unscented Kalman filter

中图分类号: