[1] Bird G A. Molecular gas dynamics and the direct simulation of gas flows[M]. 2nd ed.Oxford: Claredon Press,1994.
[2] Bird G A. The DSMC method[M].Version 1.1. Oxford: Claredon Press, 2013.
[3] Fan J, Boyd I D, Cai C P, et al. Computation of rarefied gas flows around a NACA 0012 airfoil[J]. AIAA Journal, 2001, 39(4): 618-625.
[4] Sun Q H, Boyd I D. Flat-plate aerodynamics at very low Reynolds number[J]. Journal of Fluid Mechanics, 2004, 502: 199-206.
[5] Frezzotti A, Ghiroldi G P, Gibelli L. Solving the Boltzmann equation on GPUs[J]. Computer Physics Communications, 2011, 182(12): 2445-2453.
[6] Bellouquid A, Calvo J, Nieto J, et al. On the relativistic BGK-Boltzmann model: asymptotics and hydrodynamics[J]. Journal of Statistical Physics, 2012, 149(2): 284-316.
[7] Torrilhon M, Struchtrup H. Boundary conditions for regularized 13-moment-equations for micro-channel-flows[J]. Journal of Computational Physics, 2008, 227(3): 1982-2011.
[8] Wu J S, Lian Y Y, Cheng G. Development and verification of a coupled DSMC-NS scheme using unstructured mesh[J]. Journal of Computational Physics, 2006, 219(2): 579-607.
[9] Nabovati A, Sellan D P, Amon C H. On the lattice Boltzmann method for phonon transport[J]. Journal of Computational Physics, 2011, 230(15): 5864-5876.
[10] Bao F B, Lin J Z. Burnett simulation of gas flow in micro channels[J]. Fluid Dynamics Research, 2008, 40(9): 679-694.
[11] Liu S, Yu P B, Xu K, et al. Unified gas kinetic scheme for diatomic molecular aimulations in all flow regimes[J]. Journal of Computational Physics, 2014, 259: 96-113.
[12] Eu B C. Kinetic theory and irreversible thermodynamics[M]. Candana: Wiley, 1992: 358-359, 365-370, 377-379.
[13] Myong R S. Thermodynamically consistent hydrodynamic computational models for high-Knudsen-number gas flows[J]. Physics of Fluids, 1999, 11(9): 2788-2802.
[14] Myong R S. A computational method for Eu's generalized hydrodynamic equations of rarefied and microscale gasdynamics[J]. Journal of Computational Physics, 2001, 168(1): 47-72.
[15] Myong R S. A generalized hydrodynamic computational model for rarefied and microscale diatomic gas flows[J]. Journal of Computational Physics, 2004,195(2): 655-676.
[16] Michelle Y. An experimental rocket model and numerical plume boundary studies for under-expanded flow[D]. Sydney: The University of New South Wales, 2011.
[17] Choe D S. Numerical investigation of rarefied nozzle flows by Eu's generalized hydrodynamic equations[D]. Seoul: Seoul National University, 2001.
[18] Myong R S. Impact of computational physics on multi-scale CFD and related numerical algorithms[J]. Computers & Fluids, 2011, 45(1): 64-69.
[19] Myong R S. On the high Mach number shock structure singularity caused by overreach of Maxwellian molecules[J]. Physics of Fluids, 2014, 26(5): 056102-1-18.
[20] Le N T P, Xiao H, Myong R S. A triangular discontinuous Galerkin method for non Newtonian implicit constitutive models of rarefied and microscale gases [J]. Journal of Computational Physics, 2014, 273: 160-184.
[21] Comeaux K A, Chapman D R, MacCormack R W. An analysis of the Burnett equations based on the second law of thermodynamics, AIAA-1995-0415[R]. Reston: AIAA, 1995.
[22] Balakrishnan R, Agarwal R K, Yun K Y. Higher-order distribution functions, BGK-Burnett equations and Boltzmann's H-Theorem, AIAA-1997-2551[R]. Reston: AIAA, 1997.
[23] Torrilhon M. Special issues on moment methods in kinetic gas theory[J]. Continuum Mechanics and Thermodynamics, 2009, 21(5): 341-343.
[24] Myong R S, Xiao H, Singh S. A new near-equilibrium breakdown parameter based on the rayleigh-onsager dissipation function[C]//The 29th International Symposium on Rarefied Gas Dynamics, 2014.
[25] Bassi F, Rebay S. A high-order accurate discontinuous finite element method for the numerical solution of the compressible Navier-Stokes equations[J]. Journal of Computational Physics, 1997, 131(2): 267-279.
[26] Cockburn B, Shu C W. Runge-Kutta discontinuous Galerkin methods for convection dominated problems[J]. Journal of Science Computation, 2001,16(3): 173-261.
[27] Le N T P, White C, Reese J M, et al. Langmuir-Maxwell and Langmuir-Smoluchowski boundary conditions for thermal gas flow simulations in hypersonic aerodynamics[J]. International of Journal of Heat Mass Transfer, 2012, 55(19-20): 5032-5043.
[28] Allegre J, Raffin M, Gottesdient L. Slip effect on supersonic flowfields around NACA 0012 airfoils[C]//15th International Symposium on Rarefied Gas Dynamics. Cercigani: Rarefied Gas Dynamics, 1986: 548-557.
[29] Xiao H, Singh S, Karchani A, et al. Applications of a discontinuous galerkin method for compressible non-newtonian implicit constitutive models[C]//The 10th Asian Computational Fluid Dynamics Conference, 2014.
[30] Koffi K, Andreopoulos Y, Watkins C B. Dynamics of microscale shock/vortex interaction[J]. Physics of Fluids, 2008, 20(12): 126102.
[31] Xiao H, Myong R S. Computational simulations of microscale shock-vortex interaction using a mixed discontinuous Galerkin method[J].Computers & Fluids, 2014, 105:179-193.
[32] Hadjiconstantinou N G. The limits of Navier-Stokes theory and kinetic extensions for describing small-scale gaseous hydrodynamics[J].Physics of Fluids, 2006, 18(11): 111301.
[33] Qi Z G. Direct simulation Monte Carlo on miero-and nanoscalegas flow and heat transfer[D]. Beijing: Institute of Engineering Thermophysics, Chinese Academy of Sciences, 2007 (in Chinese). 祁致国. 微尺度气体流动与传热的直接Monte Carlo方法模拟[D]. 北京: 中国科学院工程热物理所, 2007.
|