[1] Bewlay B P, Jackson M R, Zhao J C, et al. Ultrahigh-temperature Nb-silicide-based composites[J]. Materials Research Society Bulletin, 2003, 28(9): 646-653.[2] Ubramanian P R, Mendiratta M G, Dimiduk D M. The development of Nb-based advanced intermetallic alloys for structural applications[J]. Journal of the Minerals Metals and Materials Society, 1996, 48(1): 33-34.[3] Bewlay B P, Jackson M R, Lipsitt H A. The balance of mechanical and environmental properties of a multielement niobium-niobium silicide-based in situ composite[J]. Metallurgical and Materials Transactions A, 1996, 27(12): 3801-3808.[4] Rigney J D, Lewandowksi J J. Loading rate and test temperature effects on fracture of in situ niobium silicide-niobium composites[J]. Metallurgical and Materials Transactions A, 1996, 27(10): 3292-3306.[5] Bewlay B P, Jackson M R, Subramanian P R. Processing high-temperature refractory-metal silicide in situ composites[J]. Journal of the Minerals Metals and Materials Society, 1999, 51 (4): 32-36.[6] Bewlay B P, Jackson M R, Zhao J C, et al. A review of very-high-temperature Nb-silicide-based composites[J]. Metallurgical and Materials Transactions A, 2003, 34 (10): 2043-2052.[7] Jackson M R, Bewlay B P, Zhao J C. Niobium-silicide based composites resistant to high temperature oxidation: America, US0066578[P]. 2003-04-10.[8] Bewlay B P, Lipsitt H A, Jackson M R, et al. Solidification processing of high temperature intermetallic eutectic-based alloys[J]. Materials Science and Engineering A, 1995, A192-19(pt2): 534-543.[9] Bewlay B P, Sutliff J A, Lipsitt H A, et al. Microstructural and crystallographic relationships in directionally solidified Nb/Cr2Nb and Cr/Cr2Nb eutectics[J]. Acta Materialia, 1994, 42(8): 2869-2878.[10] Liu C T, Zhu J H, Brady M P, et al. Physical metallurgy and mechanical properties of transition-metal laves phase alloys[J]. Intermetallics, 2000, 8(9): 1119-1129.[11] Lu S Q, Huang B Y, He Y H, et al. Mechanical properties of Laves phase alloys[J]. Materials Engineering, 2003(5): 43-47. (in Chinese) 鲁世强,黄伯云,贺跃辉,等. Laves 相合金的力学性能[J]. 材料工程, 2003(5): 43-47.[12] Ma C L, Tanaka H, Kasama A, et al. Microstructures and high-temperature strength of Nb-based alloys reinforced with in-situ silcide[C]//High Temperature Ordered Intermentallic Alloys IX, 2000: 1-6.[13] Fujikara M, Kasama A, Tannaka R, et al. Effect of alloy chemistry on the high temperature strengths and room temperature fracture toughness of advanced Nb-based alloys[J]. Materials Transactions, 2004, 45(2): 493-501.[14] Vellios N, Tsakiropoulos P. Study of the role of Fe and Sn additions in the microstructure of Nb-24Ti-18Si-5Cr silicide based alloys[J]. Intermetallics, 2010, 18(9): 1729-1736.[15] Vellios N, Tsakiropoulos P. The role of Fe and Ti additions in the microstructure of Nb-18Si-5Sn silicide based alloys[J]. Intermetallics, 2007, 15(12): 1529-1537.[16] Su L F, Jia L N, Feng Y B, et al. Microstructure and room-temperature fracture toughness of directionally solidified Nb-Si-Ti-Cr-Al-Hf alloy[J]. Materials Science and Engineering A, 2013, 560: 672-677.[17] Sha J B, Yang C Y, Liu J. Toughening and strengthening behavior of an Nb-8Si-20Ti-6Hf alloy with addition of Cr[J]. Scripta Materialia, 2010, 62(11): 859-862.[18] Qu S Y, Han Y F, Kang Y W. Effects of alloying elements on phase stability in Nb-Si system intermetallics materials[J]. Intermetallics, 2007,15(5): 810-813.[19] Yu J L, Zhang K F, Li Z K, et al. Fracture toughness of a hot-extruded multiphase Nb-10Si-2Fe in situ composite[J].Scripta Materialia, 2009, 61 (6): 620-623.[20] Tian Y X, Guo J T, Sheng L Y. Microstructures and mechanical properties of cast Nb-Ti-Si-Zr alloys[J]. Intermetallics, 2008, 16 (6) : 807-812.[21] Yao C F, Guo X P, Guo H S. Microstructural characteristics of integrally directionally solidified Nb-Ti-Si base ultrahigh temperature alloy with crucibles[J]. Acta Metallurgica Sinica, 2008, 44(5): 579-584. (in Chinese) 姚成方,郭喜平,郭海生. Nb-Ti-Si基超高温合金的有坩埚整体定向凝固组织分析[J]. 金属学报, 2008, 44(5): 579-584.[22] Bao J, Huang Q, Tang L, et al. Liquid-solid phase equilibria of Nb-Si-Ti ternary alloys[J]. Chinese Journal of Aeronautics, 2008, 21(3): 275-280.[23] Xu H B, Sha J B, Zhang H, et al. Progress in Nb-Si intermetallics and thermal barrier coatings for high temperature applications[C]//International Conference on Advanced Materials Development and Performance, 2008.[24] Sha J B, Hirai H, Tabaru T, et al. Effect of carbon on microstructure and high-temperature strength of Nb-Mo-Ti-Si in situ composites prepared by arc-melting and directional solidification[J]. Materials Science and Engineering A, 2003, 343(1): 282-289.[25] Jiang R L, Liu D M, Sha J B, et al. High-temperature oxidation behavior of Nb-15W-18Si-xHf (x=0, 5 and 10) alloys[J]. Transactions of Nonferrous Metals Society of China, 2006, 16 (3): S2009-S2012.[26] Zheng P, Sha J B, Liu D M, et al. Effect of Hf on high-temperature strength and room temperature ductility of Nb-15W-0.5Si-2B alloys[J]. Materials Science and Engineering A, 2008, 483-484(1-2C): 656-659.[27] Sha J B, Hirai H, Tabaru T, et al. Mechanical properties of as-cast and directionally solidified Nb-Mo-W-Ti-Si in-situ composites at high temperatures[J]. Metallurgical and Materials Transactions A, 2003, 34(1): 85-94.[28] Li X J, Chen H F, Sha J B, et al. The effects of melting technologies on the microstructures and properties of Nb-16Si-22Ti-2Al-2Hf-17Cr alloy[J]. Materials Science and Engineering A, 2010, 527(23): 6140-6152.[29] Jia L N, Ge J R, Sha J B, et al. Effects of cooling rate and pouring temperature on microstructure and fracture toughness of the induction melted Nb-16Si-22Ti-2Hf-2Cr-2Al alloy[J]. International Journal of Modern Physics B, 2010, 24(15-16): 2946-2951.[30] Li X J, Zhang H, Sha J B. Effect of vacuum induction melting technology on mechanical properties of Nb-16Si-22Ti-2Al-2Hf-17Cr alloy[J]. International Journal of Modern Physics B, 2010, 24(15-16): 2940-2945.[31] Gao M, Jia L N, Tang X X, et al. Interaction mechanism between niobium-silicide-based alloy melt and Y2O3 refractory crucible in vacuum induction melting process[J]. China Foundry, 2011, 8(2): 190-196.[32] Li Y L, Seiji M, Kenichi O, et al. Ultrahigh-temperature NbSS/Nb5Si3 fully-lamellar microstructure developed by directional solidification in OFZ furnace[J]. Intermetallics, 2011, 19(4): 460-469.[33] Li Y L, Ma C L, Zhang H, et al. Mechanical properties of directionally solidified Nb-Mo-Si-based alloys with aligned NbSS/Nb5Si3 lamellar structure[J]. Materials Science and Engineering A, 2011, 528(18): 5772-5777.[34] Ma L M, Tang X X, Wang B, et al. Purification in interaction between yttria mould and Nb-silicide based alloy during directional solidification: a novel effect of yttrium[J]. Scripta Materialia, 2012, 67(3): 233-236.[35] Ma L M, Yuan S N, Cui R J, et al. Interactions between Nb-silicide based alloys and yttria moulds during directional solidification[J]. International Journal of Refractory Metals and Hard Materials, 2012, 30(1): 96-101.[36] Liu W, Fu Y M, Sha J B. Microstructure and mechanical properties of Nb-Si alloys fabricated by spark plasma sintering[J]. Progress in Natural Science: Materials International, 2013, 23(1): 55-63.[37] Liu W, Fu Y, Sha J B. Microstructural evolution and mechanical properties of a multi-component Nb-16Si-22Ti-2Al-2Hf-2Cr alloy prepared by reactive hot press sintering[J]. Metallurgical and Materials Transaction A, 2013, 44(5): 2319-2330.[38] Yuan S N, Jia L N, Ma L M, et al. The microstructure optimizing of the Nb-14Si-22Ti-4Cr-2Al-2Hf alloy processed by directional solidification[J]. Materials Letters, 2012, 84: 124-127.[39] Yuan S N, Jia L N, Ma L M, et al. Eutectic formation during directional solidification: impact of the withdrawal rate[J]. Materials Letters, 2013, 92: 317-320.[40] Yuan S N, Jia L N, Su L F, et al. The microstructure evolution of directionally solidified Nb-22Ti-14Si-4Cr-2Al-2Hf alloy during heat treatment[J]. Intermetallics, 2013, 38: 102-106.[41] Perepezko J H. The hotter the engine, the better[J]. Science, 2009, 326(5956): 1068-1069.[42] Subramanian P R, Mendiratta M G, Dimiduk D M, et al. Advanced intermetallic alloys-beyond gamma titanium aluminides[J]. Materials Science and Engineering A, 1997, 239-240: 1-13.[43] Yao D Z, Cai R, Zhou C G, et al. Experimental study and modeling of high temperature oxidation of Nb-base in situ composites[J]. Corrosion Science, 2009, 51(2): 364-370.[44] Yao D Z, Zhou C G, Yang J Y, et al. Experimental studies and modeling of the oxidation of multiphase niobium-base alloys[J]. Corrosion Science, 2009, 51(11): 2619-2627.[45] Mitra R, Rama V V. Effect of minor alloying with Al on oxidation behaviour of MoSi2 at 1 200 ℃[J]. Materials Science and Engineering A, 1999, 260(1): 146-160.[46] Toshio M, Katsuyuki Y. High temperature oxidation and pesting of Mo(Si,Al)2[J]. Materials Science and Engineering A, 1997, 239-240: 828-841.[47] Tatsuo T, Kazuhisa S, Hisatoshi H, et al. Influences of Al content and secondary phase of Mo5(Si,Al)3 on the oxidation resistance of Al-rich Mo(Si,Al)2-base composites[J]. Intermetallics, 2003, 11(7): 721-733.[48] Wang W, Yuan B F, Zhou C G. Formation and oxidation resistance of germanium modified silicide coating on Nb based in-situ composite[J]. Corrosion Science, 2014, 80: 164-168.[49] Knittel S, Mathieu S, Vilasi M. The oxidation behaviour of uniaxial hot pressed MoSi2 in air from 400 to 1 400 ℃[J]. Intermetallics, 2011, 19(8): 1207-1215.[50] Ritt P, Sakidja R, Perepezko J H. Mo-Si-B based coating for oxidation protection of SiC-C composites[J]. Surface Coating Technology, 2012, 206 (19): 4166-4172.[51] Feng T, Li H J, Shi X H, et al. Sealing role of B2O3 in MoSi2-CrSi2-Si/B-modified coating for C/C composites[J]. Corrosion Science, 2012, 60: 4-9.[52] Lemberg J A, Ritchie R O. Mo-Si-B alloys for ultrahigh-temperature structural applications[J]. Advanced Materials, 2012, 24(26): 3445-3480.[53] Wu J Y, Wang W, Zhou C G. Microstructure and oxidation resistance of Mo-Si-B coating on Nb based in situ composites[J]. Corrosiion Science, 2014, 87: 421-426. |