[1] Zhou T P, Yang X G, Hou G C, et al. Experimental analysis of low-cycle and creep fatigue for directionally solidified DZ125 with a hole. Journal of Aerospace Power, 2007, 22(9): 1526-1531. (in Chinese) 周天朋, 杨晓光, 候贵仓, 等. DZ125带小孔构件低循环/保载疲劳试验与分析. 航空动力学报, 2007, 22(9): 1526-1531.[2] Zhou T P, Yang X G, Shi D Q, et al. Modeling of low-cycle and creep fatigue life for DZ125 smooth specimens and small hole components. Journal of Aerospace Power, 2008, 23(2): 276-280. (in Chinese) 周天朋, 杨晓光, 石多奇, 等. DZ125光滑试样与小孔构件低循环/保载疲劳寿命建模. 航空动力学报, 2008, 23(2): 276-280.[3] Manson S S. Behavior of materials under conditions of thermal stress. Washington, D.C.: National Advisory Commission on Aeronautics, 1953.[4] Coffin L F, Jr. A study of the effects of cyclic thermal stress on a ductile metal. New York: Knolls Atomic Power Laboratory, 1953.[5] Morrow J. Fatigue design handbook-advances in engineering. Warrendale, PA: Society of Automotive Engineers, 1968: 21-29.[6] Smith K N, Watson P, Topper T H. A stress-strain function for the fatigue of metals. Journal of Materials, 1970, 5(4): 767-778.[7] Yao W, Xia K, Gu Y. On the fatigue notch factor, Kf. International Journal of Fatigue, 1995, 17(4): 245-251.[8] Bentachfine S, Pluvinage G, Gilgert J, et al. Notch effect in low cycle fatigue. International Journal of Fatigue, 1999, 21(5): 421-430.[9] Neuber H. Theory of notch stresses: principles for exact stress calculation. Ann Arbor, MI: JW Edwards, 1946.[10] Peterson R E. Notch sensitivity. Sines G, Waisman J L. Metal fatigue. New York: McGraw Hill, 1959: 293-306.[11] Taylor D. Geometrical effects in fatigue: a unifying theoretical model. International Journal of Fatigue, 1999, 21(5): 413-420.[12] Susmel L, Taylor D. A novel formulation of the theory of critical distances to estimate lifetime of notched components in the medium-cycle fatigue regime. Fatigue and Fracture of Engineering Materials and Structures, 2007, 30(7): 567-581.[13] Susmel L, Taylor D. On the use of the theory of critical distances to estimate fatigue strength of notched components in the medium-cycle fatigue regime. Proceedings of Fatigue, 2006, 2006.[14] Susmel L, Atzori B, Meneghetti G, et al. Notch and mean stress effect in fatigue as phenomena of elasto-plastic inherent multiaxiality. Engineering Fracture Mechanics, 2011, 78(8): 1628-1643.[15] GB/T 15248—1994. The test method for axial loading constant amplitude low cycle fatigue of metallic materials. Beijing: Standards Press of China, 1994: 1-17. (in Chinese) GB/T 15248—1994. 金属材料轴向等幅低循环疲劳试验方法. 北京: 中国标准出版社, 1994: 1-17.[16] HB 5287—1996. The test method for axial loading on low cycle fatigue of metallic materials. Beijing: Standards Press of China, 1996: 1-22. (in Chinese) HB 5287—1996. 金属材料轴向加载疲劳试验方法. 北京: 中国标准出版社, 1996: 1-22.[17] Susmel L, Taylor D. An elasto-plastic reformulation of the theory of critical distances to estimate lifetime of notched components failing in the low/medium-cycle fatigue regime. Journal of Engineering and Technology, 2010, 132(2): 210021-210028.[18] China aeronautic material handbook (internal publication). Beijing: Institute of Aeronautical Materials, 2004:171-213. (in Chinese) 中国航空材料手册(内部使用). 北京: 北京航空材料研究院, 2004: 171-213.[19] Yang X G, Wang J K, Liu J L. High temperature LCF life prediction of notched DS Ni-based superalloy using critical distance concept. International Journal of Fatigue, 2011, 33(11): 1470-1476. |