[1] Koizumi Y, Ro Y, Nakazawa S, et al. NiTi-base intermetallic alloys strengthened by Al substitution. Materials and Engineering: A, 1997, 223(1-2): 36-41.
[2] Meng L J, Li Y, Zhao X Q, et al. The mechanical properties of intermetallic Ni50-xTi50Alx alloys (x=6, 7, 8, 9). Intermetallics, 2007, 15(5-6): 814-818.
[3] Xu H B, Meng L J, Xu J, et al. Mechanical properties and oxidation characteristics of TiNiAl(Nb) intermetallics. Intermetallics, 2007, 15(5-6): 778-782.
[4] Meng L J, Li Y, Zhao X Q, et al. Effect of Nb on strengthening mechanism of Ti-rich TiNiAl intermetallics. Acta Aeronautica et Astronautica Sinica, 2007, 28 (5): 1206-1209. (in Chinese) 孟令杰, 李岩, 赵新青, 等. Nb对富钛TiNiAI金属间化合物强化机制的影响. 航空学报, 2007, 28(5): 1206- 1209.
[5] Li Y, Liu Z M, Xiao L. Phase transformations and mechanical properties of NiTiAl shape memory alloys with equal Ni/Ti atom ratio. International Journal of Modern Physics B, 2010, 24(15-16): 2423-2428.
[6] Guo W M, Song P S, Wu J T, et al. Development and prospect of powder metallurgy superalloys. Powder Metallurgy Industry, 1999, 9(2): 9-16. (in Chinese) 国为民, 宋璞生, 吴剑涛, 等. 粉末高温合金的研制与展望. 粉末冶金工业, 1999, 9(2): 9-16.
[7] Duan C J, Wang Q, Wang C Z. Hollow cathode discharge plasma sintering of aluminium nitride. Journal of Inorganic Materials, 2004, 19(5): 1011-1017.(in Chinese) 段成军, 王群, 王从曾. 空心阴极等离子烧结AlN陶瓷. 无机材料学报, 2004, 19(5): 1011-1017.
[8] Brunatto S F, Kuhn I, Klein A N, et al. Sintering iron using a hollow cathode discharge. Materials Science and Engineering: A, 2002, 343(1-2): 163-169.
[9] Alves C, Hajek V, Jr, dos Santos C A. Thermal behavior of supersolidus bronze powder compacts during heating by hollow cathode discharge. Materials Science and Engineering: A, 2003, 348(1-2): 84-89.
[10] Liu X. Study of hollow cathode plasma sintering process. Nanjing: School of Material Science and Technology, Nanjing University of Aeronautics and Astronautics, 2004. (in Chinese) 刘旭. 空心阴极等离子烧结工艺研究. 南京: 南京航空航天大学材料科学与技术学院, 2004.
[11] Cluff D, Corbin S F. The influence of Ni powder size, compact composition and sintering profile on the shape memory transformation and tensile behaviour of NiTi. Intermetallics, 2010, 18(8): 1480-1490.
[12] Liu P S. Determining methods for porosity of porous materials. Titanium Industry Progress, 2005, 22(6): 35-37. (in Chinese) 刘培生. 多孔材料孔率的测定方法. 钛工业进展, 2005, 22(6): 35-37.
[13] Zhang Y G, Han Y F, Chen G L, et al. Structural intermetallics. Beijing: National Defense Industrial Press, 2001: 945. (in Chinese) 张永刚, 韩雅芳, 陈国良, 等. 金属间化合物结构材料. 北京: 国防工业出版社, 2001: 945.
[14] Hwang C M, Wayman C M. Compositional dependence of transformation temperature in ternary TiNiAl and TiNiFe alloys. Scripta Metallurgical, 1983, 17(3): 381-384.
[15] Yang H J, Yang G J, Cao J M, et al. Exploratory of influence factors of phase change temperature in TiNi alloys. Rare Metals Letters, 2005, 24(4): 27-29. (in Chinese) 杨宏进, 杨冠军, 曹继敏, 等. 影响TiNi合金相变温度因素的探讨. 稀有金属快报, 2005, 24(4): 27-29.
[16] Whitney M, Corbin S F, Gorbet R B. Investigation of the mechanisms of reactive sintering and combustion synthesis of NiTi using differential scanning calorimetry and microstructural analysis. Acta Material, 2008, 56(3): 559-570.
[17] Chen X J, Zhang L, Xia D T, et al. Thermodynamics and kinetics analysis of NiTi by combustion synthesis. Material & Heat Treatment, 2007, 36(2): 10-12, 51. (in Chinese) 陈秀娟, 张林, 夏天东, 等. 热爆反应生成 NiTi的热力学与动力学分析. 材料热处理, 2007, 36(2): 10-12, 51.
[18] Li B Y, Rong L J, Li Y Y. The influence of addition of TiH2 in elemental powder sintering porous Ni-Ti alloys. Materials Science and Engineering: A, 2000, 281(1-2): 169-175.
[19] Wang H B, Han J C, Zhang X H, et al. Reaction mechanism of continually heating Ni and Al particles. Acta Metallurgical Sinica, 1998, 34(9): 992-998. (in Chinese) 王华彬, 韩杰才, 张幸红, 等. Ni-Al粉连续加热过程中的反应机理. 金属学报, 1998, 34(9): 992-998.
[20] Wang Y H, Lin J P, He Y H, et al. Progress in reactive mechanism of Ti with Al elemental powders. Materials Review, 2007, 21(1): 83-85. (in Chinese) 王衍行, 林均品, 贺跃辉, 等. 元素粉末Ti与Al反应机理的研究进展. 材料导报, 2007, 21(1): 83-85.
[21] Brain I. Thermochemical data of pure substances. Cheng N L, Niu S T, Xu G Y, translated. Beijing: Science Press, 2003. (in Chinese) 伊赫桑·巴伦. 纯物质热化学数据手册. 程乃良, 牛四通, 徐桂英, 译. 北京: 科学出版社, 2003.
[22] Morsi K. Review: reaction synthesis processing of Ni-Al intermetallic materials. Materials Science and Engineering: A, 2001, 299(1): 1-15.
[23] Dong H X, Jiang Y, He Y H, et al. Formation of porous Ni-Al intermetallics through pressureless reaction synthesis. Journal of Alloys and Compounds, 2009, 484(1): 907-913.
[24] Hsiung L C, Sheu H H. A comparison of the phase evolution in Ni, Al, and Ti powder mixtures synthesized by SHS and MA processes. Journal of Alloys and Compounds, 479(1-2): 314-325.
[25] Zhang N, Babayan Khosrovabadi P, Lindenhovius J H, et al. TiNi shape memory alloys prepared by normal sintering. Materials Science and Engineering: A, 1992, 150(2): 263-270.
[26] Dong H X, He Y H, Jiang Y, et al. Effect of Al content on porous Ni-Al alloys. Materials Science and Engineering: A, 2011, 528(13-14): 4849-4855.
[27] Lee T K, Mosunov E I, Hwang S K. Consolidation of a gamma TiAl-Mn-Mo alloy by elemental powder metallurgy. Materials Science and Engineering: A, 1997, 239-240: 540-545.
[28] Ye L L, Liu Z G, Raviprasad K, et al. Consolidation of MA amorphous NiTi powders by spark plasma sintering. Materials Science and Engineering: A, 1998, 241 (1-2): 290-293. |