[1] Kim H W, Brown R E. Modelling the aerodynamics of coaxial helicopters—from an isolated rotor to a complete aircraft. Proceedings of the 1st EU-Korea Conference on Science and Technology, 2008: 45-59.
[2] Escareno J, Sanchez A, Garcia O, et al. Modeling and global control of the longitudinal dynamics of a coaxial convertible mini-UAV in hover mode. Journal of Intelligent and Robotic Systems: Theory and Applications. 2009, 54(1-3): 261-273.
[3] Schafroth D, Bermes C, Bouabdallah S, et al. Modeling, system identification and robust control of a coaxial micro helicopter. Control Engineering Practice, 2010, 18(7): 700-711.
[4] Xu H Y, Ye Z Y. Numerical simulation of unsteady flow around forward flight helicopter with coaxial rotors.Chinese Journal of Aeronautics, 2011, 24(1): 1-7.
[5] Bermes C, Bouabdallah S, Schafroth D, et al. Design of the autonomous micro helicopter muFly. Journal of Mechatronics, 2011, 21(5): 765-775.
[6] Hull R A, Schumacher D, Qu Z. Design and evaluation of robust nonlinear missile autopilots from a performance perspective. Proceedings of the American Control Conference, 1995: 189-193.
[7] Xu H, Mirmirani M D, Ioannou P A. Adaptive sliding mode control design for a hypersonic flight vehicle. Journal of Guidance, Control, and Dynamics, 2004, 27(5): 829-838.
[8] Liu Q, Yu D R, Wang Z Q. Sliding-mode observer design for a hypersonic vehicle. Acta Aeronautica et Astronautica Sinica, 2004, 25(6): 588-592.(in Chinese) 刘强, 于达仁, 王仲奇. 高超声速飞行器的滑模观测器设计.航空学报, 2004, 25(6): 588-592.
[9] Xu R, Ozguner U. Sliding mode control of a class of underactuated systems. Automatica, 2008, 44(1): 233-241.
[10] Johnson E N, Calise A J. Pseudo-control hedging: a new method for adaptive control. Advances in Navigation Guidance and Control Technology Workshop, 2000.
[11] Leishman J G, Ananthan S. Aerodynamic optimization of a coaxial proprotor. 62nd Annual National Forum of the American Helicopter Society, 2006.
[12] Bohorquez F. Rotor hover performance and system design of an efficient coaxial rotary wing micro air vehicle. Maryland: Department of Aerospace Enginering, University of Maryland, 2007.
[13] Pillay P, Krishnan R. Modeling, simulation, and analysis of permanent-magnet motor drives. I. the permanent-magnet synchronous motor drive. IEEE Transactions on Industry Applications, 1989, 25(2): 265-273.
[14] Aung W P. Analysis on modeling and simulink of DC motor and its driving system used for wheeled mobile robot. World Academy of Science, Engineering and Technology, 2007, 32: 299-306.
[15] Johnson E N, Calise A J, Corban J E. Adaptive guidance and control for autonomous launch vehicles. Proceedings of IEEE Aerospace Conference, 2001: 2669-2682.
[16] Calise A J, Lee H, Kim N. High bandwidth adaptive flight control. AIAA-2000-4551, 2000.
[17] Hovakimyan N, Kim N, Calise A J, et al. Adaptive output feedback for high-bandwidth control of an unmanned helicopter. AIAA-2001-4181, 2001.
[18] Leintner J, Calise A, Prasad J. Analysis of adaptive neural networks for helicopter flight controls. Joural of Guidance, Control, and Dynamics, 1997, 20(5): 972-979.
[19] Calise A J, Johnson E N, Johnson M D, et al. Applications of adaptive neural-network control to unmanned aerial vehicles. AIAA/ICAS International Air and Space Symposium and Exposition: Next 100 Years, 2003.
[20] Mcfarland M B, Calise A J. Neural-adaptive nonlinear autopilot design for an agile anti-air missile. AIAA Guidance, Navigation, and Conrol Conference, 1996.
[21] Mcfarland M B, Calise A J. Neural networks for stable adaptive control of air-to-air missiles. AIAA Guidance, Navigation, and Conrol Conference, 1995.
[22] Cai H M, Ang H S, Zheng X M. Flight control system of MAV based on adaptive dynamic inversion. Journal of Nanjing University of Aeronautics & Astronautics, 2011, 43(2): 137-142. (in Chinese) 蔡红明, 昂海松, 郑祥明. 基于自适应逆的微型飞行器飞行控制系统.南京航空航天大学学报, 2011, 43(2): 137-142.
[23] Yang Z F, Lei H M, Dong F Y, et al. Inverse control of missile on-line compensation based on LS-SVM. Systems Engineering and Electronics, 2010, 32(6): 1314-1317. (in Chinese) 杨志峰, 雷虎民, 董飞垚, 等. 基于LS-SVM的导弹在线误差补偿逆控制.系统工程与电子技术, 2010, 32(6): 1314-1317.
[24] Johnson E N, Calise A J. Neural network adaptive control of systems with input saturation. Proceeding of the American Control Conference, 2001: 3527-3532.
[25] Wang H, Xu J F, Gao Z. Design of attitude control system based on neural network to unmanned helicopter. Acta Aeronautica et Astronautica Sinica, 2005, 26(6): 16-20. (in Chinese) 王辉, 徐锦法, 高正. 基于神经网络的无人直升机姿态控制系统设计. 航空学报, 2005, 26(6): 16-20.
[26] Chen H B, Zhang S G, Fang Z P. Implicit NDI robust nonlinear control design with acceleration feedback. Acta Aeronautica et Astronautica Sinica, 2009, 30(4):597-603.(in Chinese) 陈海兵, 张曙光, 方振平. 加速度反馈的隐式动态逆鲁棒非线性控制律设计. 航空学报, 2009, 30(4): 597-603.
[27] ADS-33E-PRF Aeronautical design standard performance specification handling qualities requirements for military rotorcraft. United States Army Aviation and Missile Command, 2000.
[28] Calise J, Rysdyk R T. Adaptive model inversion flight control for tiltrotor aircraft. AIAA-1997-3758, 1997.
[29] Chowdhary G, Johnson E N. Adaptive flight control with guaranteed convergence. Conference on Guidance, Navigation and Control, 2011.
[30] Johnson E N, Oh S M. Adaptive control using combined online and background learning neural network. IEEE Conference on Decision and Control, 2004: 5433-5438.
[31] Lewis F L, Yegildirek A, Liu K. Multilayer neural-net robot controller with guaranteed tracking performance. IEEE Transactions on Neural Networks, 1996, 7(2): 388-399. |