[1] 陈荣章. 航空铸造涡轮叶片合金和工艺发展的回顾与展望[J]. 航空制造技术, 2002(2): 18-24. Chen Rongzhang. Review and prospect of developments of cast superalloys and technology of aeroengine turbine blade [J]. Aeronautical Manufacturing Technology, 2002(2): 18-24. (in Chinese)
[2] Harris K, Erickson G L, Schwer R E. Directionally solidified and single crystal superalloys [M]. New York: ASM International, 1990: 995-1006.
[3] Yang X L, Dong H B, Wang W, et al. Microscale simulation of stray grain formation in investment cast turbine blades [J]. Materials Science and Engineering A, 2004, 386(1-2): 129-139.
[4] Sun R J, Yan X J, Deng Y, et al. Microstructure simulation of blade-Like specimens during directional solidification //Proceedings of 2nd ISJPPE. 2008: 280-284.
[5] Wang W, Kermanpur A, Lee P D, et al. Simulation of dendritic growth in the platform region of single crystal superalloy turbine blades [J]. Journal of Materials Science, 2003, 38(21): 4385-4391.
[6] Wang W, Lee P D, McLean M. A model of solidification microstructures in nickel-based superalloys: predicting primary dendrite spacing selection [J]. Acta Materialia, 2003, 51(10): 2971-2987.
[7] 孙瑞杰, 闫晓军, 聂景旭. 定向凝固涡轮叶片高温低周疲劳的破坏特点[J]. 航空学报, 2011, 32(2): 337-343. Sun Ruijie, Yan Xiaojun, Nie Jingxu. Failure characteristics of directional solidification turbine blade under high temperature low cycle fatigue load [J]. Acta Aeronautica et Astronautica Sinica, 2011, 32(2): 337-343.(in Chinese)
[8] 冯广召, 沈军, 邹敏佳, 等. 抽拉速度对高温合金DZ125定向凝固中缩松的影响[J]. 铸造, 2009, 58(5): 427-430. Feng Guangzhao, Shen Jun, Zou Minjia, et al. Influence of withdrawal rate on the micro-porosity of superalloy DZ125 in directional solidification [J]. Foundry, 2009, 58(5): 427-430. (in Chinese)
[9] 岳珠峰, 吕震宙, 杨治国, 等. 晶体取向的偏差和随机性对镍基单晶叶片强度与疲劳寿命的影响[J]. 航空动力学报, 2003, 18(4): 477-480. Yue Zhufeng, Lu Zhenzhou, Yang Zhiguo, et al. Influence of deviation and randomness of crystallographic orientations on the strength and life of nickel-base single crystal superalloy turbine blades [J]. Journal of Aerospace Power, 2003, 18(4): 477-480. (in Chinese)
[10] Arakere N K, Swanson G. Effect of crystal orientation on fatigue failure of single crystal nickel base turbine blade superalloys [J]. Journal of Engineering for Gas Turbines and Power, 2002, 124(1): 161-176.
[11] Zhao Y, Wang L, Li H Y, et al. Effects of recrystallization on the low cycle fatigue behavior of directionally solidified superalloy DZ40M [J]. Rare Metals, 2008, 27(4): 425-428.
[12] Alexandre F, Deyber S, Pineau A. Modelling the optimum grain size on the low cycle fatigue life of a Ni based superalloy in the presence of two possible crack initiation sites [J]. Scripta Materialia, 2004, 50(1): 25-30.
[13] Marahleh G, Kheder A R I, Hamad H F. Creep life prediction of service-exposed turbine blades [J]. Materials Science and Engineering A, 2006, 433(1-2): 305-309.
[14] Yue Z F, Lu Z Z, Zheng C Q. et al. Life study of nickel-based single crystal turbine blades: viscoplastic ctrystallographic constitutive behavior [J]. Theoretical and Applied Fracture Mechanics, 1996, 24(2): 139-145.
[15] Chen L J, Liu Y H, Xie L Y. Power-exponent function model for low-cycle fatigue life prediction and its applications [J]. International Journal of Fatigue, 2007, 29(1): 1-9. |