[1] 苑世剑. 现代液压成形技术 [M]. 北京: 国防工业出版社, 2009: 201-205. Yuan Shijian. Modern hydroforming technology [M]. Beijing: National Defense Industry Press, 2009: 201-205. (in Chinese)
[2] Zhang S H, Danckert J. Development of hydro-mechanical deep drawing [J]. Journal of Materials Processing Technology, 1998, 83(1-3): 14-25.
[3] Zhang S H, Wang Z R, Xu Y, et al. Recent developments in sheet hydroforming technology [J]. Journal of Materials Processing Technology, 2004, 151(1-3): 237-241.
[4] Nakamura K, Nakagawa T. Sheet metal forming with hydraulic counter pressure in Japan [J]. CIRP Annals—Manufacturing Technology, 1987, 36(1): 191-194.
[5] Nakamura K, Nakagawa T. Reverse deep drawing with hydraulic counter pressure using the peripheral pushing effect [J]. CIRP Annals—Manufacturing Technology, 1986, 35(1): 173-176.
[6] Nakamura K, Nakagawa T, Amino H. Various applications of hydraulic counter-pressure deep drawing [J]. Journal of Materials Processing Technology, 1997, 71(1): 160-167.
[7] Amino H, Nakamura K, Nakagawa T. Counter-pressure deep drawing and its application in the forming of automobile parts [J]. Journal of Materials Processing Technology, 1990, 23(3): 243-265.
[8] Liu X J, Xu Y C, Yuan S J. Formation of aluminum-magnesium alloy cup by hydrodynamic deep drawing with twin-loading paths [J]. Journal of Wuhan University of Technology: Materials Science Edition, 2009, 24(2): 193-197.
[9] Liu X J, Xu Y C, Yuan S J. Effects of loading paths on hydrodynamic deep drawing with independent radial hydraulic pressure of aluminum alloy based on numerical simulation [J]. Journal of Materials Science and Technology, 2008, 24(3): 395-399.
[10] 王会廷, 高霖, 沈晓辉. 双路径自然增压铝合金2A12O充液拉深 [J]. 航空学报, 2010, 31(6): 1266-1271. Wang Huiting, Gao Lin, Shen Xiaohui. Hydromechanical deep drawing of aluminum alloy 2A12O assisted by augmented radial pressure [J]. Acta Aeronautica et Astronautica Sinica, 2010, 31(6): 1266-1271. (in Chinese)
[11] Panda S K, Kumar D R. Improvement in formability of tailor welded blanks by application of counter pressure in biaxial stretch forming [J]. Journal of Materials Processing Technology, 2008, 204(1-3): 70-79.
[12] 汪建敏, 赵燕, 姜银方. 拼焊板盒形件充液拉深的数值模拟[J]. 锻压技术, 2007, 32(2): 28-32. Wang Jianmin, Zhao Yan, Jiang Yinfang. Numerical simulation of hydro-forming of tailor welded blanks [J]. Forging and Stamping Technology, 2007, 32(2): 28-32. (in Chinese)
[13] Zhang S H, Zhou L X, Wang Z T, et al. Technology of sheet hydroforming with a movable female die [J]. International Journal of Machine Tools and Manufacture, 2003, 43(8): 781-785.
[14] Palumbo G, Zhang S H, Tricarico L X, et al. Numerical/experimental investigations for enhancing the sheet hydroforming process [J]. International Journal of Machine Tools and Manufacture, 2006, 46(11): 1212-1221.
[15] Zhang S H, Jensen M R, Nielsen K B, et al. Effect of anisotropy and prebulging on hydromechanical deep drawing of mild steel cups [J]. Journal of Materials Processing Technology, 2003, 142(2): 544-550.
[16] Zhao S D, Zhang Z Y, Zhang Y, et al. The study on forming principle in the process of hydro-mechanical reverse deep drawing with axial pushing force for cylindrical cups [J]. Journal of Materials Processing Technology, 2007, 187-188: 300-303.
[17] Zhang Z Y, Zhao S D, Zhang Y. A novel response variable for finite element simulation of hydro-mechanical deep drawing [J]. Journal of Materials Processing Technology, 2008, 208(1-3): 85-89.
[18] Lin J, Zhao S D, Zhang Z Y, et al. Deep drawing using a novel hydro-mechanical tooling [J]. International Journal of Machine Tools and Manufacture, 2009, 49(1): 73-80.
[19] Lang L H, Gu G C, Li T, et al. Numerical and experimental conformation of the calibration stage’s effect in multi-operation sheet hydroforming using poor-formability materials [J]. Journal of Materials Processing Technology, 2008, 201(1-3): 97-100. |