Acta Aeronautica et Astronautica Sinica ›› 2025, Vol. 46 ›› Issue (23): 631961.doi: 10.7527/S1000-6893.2025.31961
• special column • Previous Articles
Bin TANG, Xiaogang YANG(
), Ruitao LU, Zhenyu ZHANG, Shuang SU
Received:2025-03-11
Revised:2025-03-26
Accepted:2025-05-22
Online:2025-06-10
Published:2025-06-06
Contact:
Xiaogang YANG
E-mail:doctoryyxg@163.com
Supported by:CLC Number:
Bin TANG, Xiaogang YANG, Ruitao LU, Zhenyu ZHANG, Shuang SU. Aircraft infrared/satellite heterogenous fast matching localization method based on image translation[J]. Acta Aeronautica et Astronautica Sinica, 2025, 46(23): 631961.
Table 1
Comparison of mainstream methods for UAV matching localization
| 方法类型 | 核心原理 | 代表算法 | 优点 | 局限性 |
|---|---|---|---|---|
| 基于区域的匹配定位 | 通过相似性度量匹配图像区域,估计全局几何变换 | 归一化互相关、均方误差和互信息等 | 算法直观,无需训练数据,结构信息鲁棒性好 | 对光照和域差异敏感,结构方法计算复杂,多域适应性差 |
| 基于特征的匹配定位 | 提取图像中的点、线、区域等 显著几何特征进行匹配 | SIFT、SURF、ORB等 | 精度高,特征具有几何意义,易于结合几何约束(如RANSAC) | 多域匹配误差大,易受遮挡、光照干扰,单一特征存在适应性不足 |
| 基于深度学习的直接匹配定位 | 通过Transformer或CNN 端到端地学习图像匹配关系 | SuperPoint、Super-Glue、LoFTR等 | 可学习跨域特征,自动提取语义结构,对非线性变化适应强 | 依赖训练数据,对小目标/低纹理区域仍不稳定,计算量大 |
| 基于深度学习的间接匹配定位 | 特征映射或图像域转换, 减少域差异 | 孪生网络、对比学习、风格迁移等 | 提升跨域适应性,可用于红外-可见光等场景 | 特征映射效果依赖模型设计,域转换几何一致性不佳 |
Table 5
Performance comparison of satellite-infrared image matching algorithms
| 方法 | 风格迁移模型 | MA/% | AME/pixel | 平均匹配时间/s | ||
|---|---|---|---|---|---|---|
| SIFT | 原始卫星图像 | 97 | 1 | 1.031 | 18.000 | 0.078 |
| CycleGAN | 43 | 2 | 4.651 | 20.638 | ||
| HC_CycleGAN | 40 | 2 | 5 | 18.718 | ||
| SURF | 原始卫星图像 | 101 | 1 | 0.990 | 24.889 | 0.063 |
| CycleGAN | 90 | 2 | 2.222 | 20.929 | ||
| HC_CycleGAN | 83 | 2 | 2.410 | 16.993 | ||
| ORB | 原始卫星图像 | 271 | 4 | 1.476 | 11.963 | 0.071 |
| CycleGAN | 204 | 3 | 1.471 | 21.685 | ||
| HC_CycleGAN | 160 | 2 | 1.250 | 8.237 | ||
| D2-Net | 原始卫星图像 | 47 | 16 | 34.043 | 17.796 | 0.440 |
| CycleGAN | 21 | 10 | 47.619 | 15.919 | ||
| HC_CycleGAN | 28 | 10 | 35.714 | 12.190 | ||
| LoFTR | 原始卫星图像 | 215 | 93 | 43.256 | 8.882 | 0.101 |
| CycleGAN | 185 | 41 | 22.162 | 8.935 | ||
| HC_CycleGAN | 177 | 53 | 29.944 | 11.431 | ||
| SuperGlue | 原始卫星图像 | 71 | 64 | 90.141 | 5.523 | 0.059 |
| CycleGAN | 61 | 60 | 98.361 | 5.378 | ||
| HC_CycleGAN | 49 | 42 | 93.878 | 5.207 | ||
| LightGlue | 原始卫星图像 | 79 | 7 | 8.861 | 7.923 | 0.042 |
| CycleGAN | 87 | 4 | 4.598 | 9.103 | ||
| HC_CycleGAN | 86 | 4 | 4.651 | 5.851 | ||
| 快速特征点匹配 | 原始卫星图像 | 123 | 114 | 92.683 | 6.463 | 0.053 |
| CycleGAN | 111 | 95 | 85.586 | 5.338 | ||
| HC_CycleGAN | 102 | 81 | 79.412 | 3.711 |
Table 6
Performance comparison of image matching algorithms on VEDAI dataset
| 方法 | 风格迁移模型 | MA/% | AME/pixel | 平均匹配时间/s | ||
|---|---|---|---|---|---|---|
| SIFT | 原始光学图像 | 564 | 352 | 62.411 | 13.138 | 0.268 9 |
| CycleGAN | 282 | 148 | 52.482 | 14.249 | ||
| HC_CycleGAN | 548 | 336 | 63.314 | 13.072 | ||
| SURF | 原始光学图像 | 287 | 168 | 58.537 | 18.088 | 0.231 6 |
| CycleGAN | 260 | 103 | 39.615 | 18.614 | ||
| HC_CycleGAN | 280 | 165 | 58.929 | 17.987 | ||
| ORB | 原始光学图像 | 61 | 35 | 57.377 | 17.655 | 0.069 0 |
| CycleGAN | 52 | 23 | 44.231 | 18.211 | ||
| HC_CycleGAN | 64 | 39 | 60.938 | 17.057 | ||
| D2-Net | 原始光学图像 | 183 | 8 | 4.372 | 19.323 | 0.626 0 |
| CycleGAN | 208 | 9 | 4.327 | 19.307 | ||
| HC_CycleGAN | 185 | 8 | 4.424 | 18.477 | ||
| LoFTR | 原始光学图像 | 5 122 | 4 606 | 89.926 | 6.073 | 1.049 6 |
| CycleGAN | 4 940 | 4 351 | 88.077 | 6.029 | ||
| HC_CycleGAN | 5 597 | 5 094 | 91.013 | 5.527 | ||
| SuperGlue | 原始光学图像 | 435 | 376 | 86.437 | 7.695 | 0.170 9 |
| CycleGAN | 411 | 346 | 84.185 | 7.082 | ||
| HC_CycleGAN | 431 | 372 | 86.511 | 6.653 | ||
| LightGlue | 原始光学图像 | 348 | 269 | 77.299 | 8.441 | 0.146 0 |
| CycleGAN | 378 | 294 | 77.778 | 7.460 | ||
| HC_CycleGAN | 347 | 268 | 78.233 | 7.360 | ||
| 快速特征点匹配 | 原始光学图像 | 477 | 394 | 82.600 | 5.783 | 0.152 4 |
| CycleGAN | 405 | 336 | 82.963 | 5.575 | ||
| HC_CycleGAN | 412 | 357 | 86.650 | 5.013 |
| [1] | 杨小冈, 陈世伟, 席建祥. 飞行器异源景像匹配制导技术[M]. 北京: 科学出版社, 2016:1-20. |
| YANG X G, CHEN S W, XI J X. Matching guidance technology of aircraft heterogeneous scenes[M]. Beijing: Science Press, 2016 (in Chinese): 1-20. | |
| [2] | LOWE D G. Distinctive image features from scale-invariant keypoints[J]. International Journal of Computer Vision, 2004, 60(2): 91-110. |
| [3] | LEUTENEGGER S, CHLI M, SIEGWART R Y. BRISK: Binary robust invariant scalable keypoints[C]∥ 2011 International Conference on Computer Vision. Piscataway: IEEE Press, 2011: 2548-2555. |
| [4] | RUBLEE E, RABAUD V, KONOLIGE K, et al. ORB: An efficient alternative to SIFT or SURF[C]∥ 2011 International Conference on Computer Vision. Piscataway: IEEE Press, 2011: 2564-2571. |
| [5] | 冯旭刚, 阮善会, 王正兵, 等. 基于局部和全局特征的电力设备红外和可见光图像匹配方法[J]. 电工技术学报, 2025, 40(7): 2236-2246, 2305. |
| FENG X G, RUAN S H, WANG Z B, et al. Infrared and visible image matching method for power equipment based on local and global features[J]. Transactions of China Electrotechnical Society, 2025, 40(7): 2236-2246, 2305 (in Chinese). | |
| [6] | ONO Y, TRULLS E, FUA P, et al. LF-Net: Learning local features from images[C]∥Advances in Neural Informa-tion Processing Systems. Red Hook: Curran Associates, 2018: 1-11. |
| [7] | REVAUD J, WEINZAEPFEL P, DE SOUZA C, et al. R2D2: Repeatable and Reliable Detector and Descript-or[C]∥33rd Conference on Neural Information Process-ing Systems (NeurIPS). Red Hook: Curran Associates, 2019: 1-11. |
| [8] | SINGH PARIHAR U, GUJARATHI A, MEHTA K, et al. RoRD: Rotation-robust descriptors and orthographic views for local feature matching[C]∥ 2021 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). Piscataway: IEEE Press, 2021: 1593-1600. |
| [9] | LUO Z X, ZHOU L, BAI X Y, et al. ASLFeat: Learning local features of accurate shape and localization[C]∥ 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Piscataway: IEEE Press, 2020: 6588-6597. |
| [10] | FAN B, ZHOU J J, FENG W S, et al. Learning semantic-aware local features for long term visual localization[J]. IEEE Transactions on Image Processing, 2022, 31: 4842-4855. |
| [11] | SHEN X L, WANG C, LI X, et al. RF-net: An end-to-end image matching network based on receptive field[C]∥ 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Piscataway: IEEE Press, 2019: 8124-8132. |
| [12] | BHOWMIK A, GUMHOLD S, ROTHER C, et al. Reinforced feature points: Optimizing feature detection and description for a high-level task[C]∥ 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Piscataway: IEEE Press, 2020: 4947-4956. |
| [13] | BARROSO-LAGUNA A, VERDIE Y, BUSAM B, et al. HDD-net: Hybrid detector descriptor with mutual interactive learning[C]∥Computer Vision-ACCV 2020. Berlin: Springer, 2021: 500-516. |
| [14] | ZHANG Y Y, WANG J G, XU S B, et al. MLIFeat: Multi-level information fusion based deep local features[C]∥Computer Vision-ACCV 2020. Berlin: Springer, 2021: 403-419. |
| [15] | SUWANWIMOLKUL S, KOMORITA S, TASAKA K. Learning of low-level feature keypoints for accurate and robust detection[C]∥ 2021 IEEE Winter Conference on Applications of Computer Vision (WACV). Piscataway: IEEE Press, 2021: 2261-2270. |
| [16] | WANG X J, LIU Z Y, HU Y, et al. FeatureBooster: Boosting feature descriptors with a lightweight neural network[C]∥ 2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Piscataway: IEEE Press, 2023: 7630-7639. |
| [17] | XUE F, BUDVYTIS I, CIPOLLA R. SFD2: Semantic-guided feature detection and description[C]∥ 2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Piscataway: IEEE Press, 2023: 5206-5216. |
| [18] | DETONE D, MALISIEWICZ T, RABINOVICH A. SuperPoint: Self-supervised interest point detection and description[C]∥ 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW). Piscataway: IEEE Press, 2018: 337-33712. |
| [19] | SARLIN P E, DETONE D, MALISIEWICZ T, et al. SuperGlue: Learning feature matching with graph neural networks[C]∥ 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Piscataway: IEEE Press, 2020: 4937-4946. |
| [20] | EFE U, INCE K G, AYDIN ALATAN A. DFM: A performance baseline for deep feature matching[C]∥ 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW). Piscataway: IEEE Press, 2021: 4279-4288. |
| [21] | ZHOU Q J, SATTLER T, LEAL-TAIXÉ L. Patch2Pix: Epipolar-guided pixel-level correspondences[C]∥ 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Piscataway: IEEE Press, 2021: 4667-4676. |
| [22] | HUANG D H, CHEN Y, LIU Y, et al. Adaptive assignment for geometry aware local feature matching[C]∥ 2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Piscataway: IEEE Press, 2023: 5425-5434. |
| [23] | DUSMANU M, ROCCO I, PAJDLA T, et al. D2-net: A trainable CNN for joint description and detection of local features[C]∥ 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Piscataway: IEEE Press, 2019: 8084-8093. |
| [24] | JIANG W, TRULLS E, HOSANG J, et al. COTR: Correspondence transformer for matching across images[C]∥ 2021 IEEE/CVF International Conference on Computer Vision (ICCV). Piscataway: IEEE Press, 2021: 6187-6197. |
| [25] | TUZCUOĞLU Ö, KÖKSAL A, SOFU B, et al. XoFTR: Cross-modal feature matching transformer[C]∥ 2024 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW). Piscataway: IEEE Press, 2024: 4275-4286. |
| [26] | 叶熠彬, 滕锡超, 于起峰, 等. 基于MatchNet和多点匹配约束的可见光-SAR图像匹配[J]. 航空学报, 2024, 45(10): 329162. |
| YE Y B, TENG X C, YU Q F, et al. Optical-SAR image matching based on MatchNet and multi-point matching constraint[J]. Acta Aeronautica et Astronautica Sinica, 2024, 45(10): 329162 (in Chinese). | |
| [27] | GATYS L A, ECKER A S, BETHGE M. Image style transfer using convolutional neural networks[C]∥ 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Piscataway: IEEE Press, 2016: 2414-2423. |
| [28] | ZHAO J W, YANG D F, LI Y F, et al. Intelligent matching method for heterogeneous remote sensing images based on style transfer[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2022, 15: 6723-6731. |
| [29] | ZHU J Y, PARK T, ISOLA P, et al. Unpaired image-to-image translation using cycle-consistent adversarial networks[C]∥ 2017 IEEE International Conference on Computer Vision (ICCV). Piscataway: IEEE Press, 2017: 2242-2251. |
| [30] | 李清格, 杨小冈, 卢瑞涛, 等. 基于GCI-CycleGAN风格迁移的跨模态地理定位方法[J]. 红外与激光工程, 2023, 52(7): 319-331. |
| LI Q G, YANG X G, LU R T, et al. Cross-modal geo-localization method based on GCI-CycleGAN style translation[J]. Infrared and Laser Engineering, 2023, 52(7): 319-331 (in Chinese). | |
| [31] | 李清格, 杨小冈, 卢瑞涛, 等. 基于红外影像层次旋转匹配的飞行器定位方法[J]. 红外与激光工程, 2024, 53(5): 20240086. |
| LI Q G, YANG X G, LU R T, et al. Aircraft localization method based on hierarchical rotation matching of infrared images[J]. Infrared and Laser Engineering, 2024, 53(5): 20240086 (in Chinese). |
| [1] | Chenhao ZHAO, Dewei WU, Jing HE, Qian WU. A semantic feature matching algorithm for UAV visual pose estimation [J]. Acta Aeronautica et Astronautica Sinica, 2025, 46(2): 330406-330406. |
| [2] | Baicheng JIN, Kuo TIAN, Lei HUANG. Parametric reconstruction method for topology optimization results of curved stiffened structures [J]. Acta Aeronautica et Astronautica Sinica, 2024, 45(24): 630586-630586. |
| [3] | Zhaochen CHU, Tao SONG, Ren JIN, Defu LIN. Vision-based air-to-air multi-UAVs tracking [J]. Acta Aeronautica et Astronautica Sinica, 2024, 45(14): 629379-629379. |
| [4] | Baichuan ZHANG, Wenhao BI, An ZHANG, Zeming MAO, Mi YANG. Transformer-based error compensation method for air combat aircraft trajectory prediction [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2023, 44(9): 327413-327413. |
| [5] | Jinrui WANG, Shanshan JI, Zongzhen ZHANG, Zhenyun CHU, Baokun HAN, Huaiqian BAO. Parallel sparse filtering for fault diagnosis under bearing acoustic signal [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2023, 44(4): 426887-426887. |
| [6] | HAN Songyu, SHAO Haidong, JIANG Hongkai, ZHANG Xiaoyang. Intelligent fault diagnosis of aero-engine high-speed bearings using enhanced CNN [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2022, 43(9): 625479-625479. |
| [7] | YANG Te, YANG Zhichun, LIANG Shuya, KANG Zaifei, JIA You. Feature extraction and identification of stationary random dynamic load using deep neural network [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2022, 43(9): 225952-225952. |
| [8] | ZHAN Qingliang, BAI Chunjin, ZHANG Ning, GE Yaojun. Feature extraction method of flow around airfoil based on time-history convolutional autoencoder [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2022, 43(11): 526531-526531. |
| [9] | CHEN Cheng, ZHAO Dan, WANG Yueqing, DENG Liang, YANG Chao, SU Chengyu, WANG Fang. NNW-TopViz visualization analysis system for flow field [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2021, 42(9): 625747-625747. |
| [10] | ZHANG Weiwei, KOU Jiaqing, LIU Yilang. Prospect of artificial intelligence empowered fluid mechanics [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2021, 42(4): 524689-524689. |
| [11] | ZHANG Kai, WANG Kaidi, YANG Xi, LI Shaoyi, WANG Xiaotian. Anti-interference recognition algorithm based on DNET for infrared aerial target [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2021, 42(2): 324223-324223. |
| [12] | WAN Peng, LI Yingguang, LIU Changqing, HUA Jiaqi. Method for accurate prediction of tool wear under varying cutting conditions based on domain adversarial gating neural network [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2021, 42(10): 524879-524879. |
| [13] | LI Jingqing, FENG Cunqian, SUN Hongwei, HE Sisan. Micro-motion feature and shape parameters extraction based on hybrid-scheme radar network for ballistic targets [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2016, 37(6): 1963-1973. |
| [14] | SHEN Hao, LI Shuxiao, SHEN Yiping, ZHU Chengfei, CHANG Hongxing. Fast Interframe Registration Method in Aerial Videos [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2013, 34(6): 1405-1413. |
| [15] | SHI Jun, JIANG Zhiguo, FENG Hao, ZHANG Haopeng, MENG Gang. Elastic Net Sparse Coding-based Space Object Recognition [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2013, 34(5): 1129-1139. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||
Address: No.238, Baiyan Buiding, Beisihuan Zhonglu Road, Haidian District, Beijing, China
Postal code : 100083
E-mail:hkxb@buaa.edu.cn
Total visits: 6658907 Today visits: 1341All copyright © editorial office of Chinese Journal of Aeronautics
All copyright © editorial office of Chinese Journal of Aeronautics
Total visits: 6658907 Today visits: 1341

