| [1] |
DEBROY T, WEI H L, ZUBACK J S, et al. Additive manufacturing of metallic components—Process, structure and properties[J]. Progress in Materials Science, 2018, 92: 112-224.
|
| [2] |
KOLADE O, OWOSENI A. Employment 5.0: The work of the future and the future of work[J]. Technology in Society, 2022, 71: 102086.
|
| [3] |
刘壮壮, 丁明路, 谢建新. 金属3D打印数字化制造研究进展[J]. 金属学报, 2024, 60(5): 569-584.
|
|
LIU Z Z, DING M L, XIE J X. Advancements in digital manufacturing for metal 3D printing[J]. Acta Metallurgica Sinica, 2024, 60(5): 569-584 (in Chinese).
|
| [4] |
张百成, 张文龙, 曲选辉. 基于高通量制备的增材制造材料成分设计[J]. 金属学报, 2023, 59(1): 75-86.
|
|
ZHANG B C, ZHANG W L, QU X H. Composition design of additive manufacturing materials based on high throughput preparation[J]. Acta Metallurgica Sinica, 2023, 59(1): 75-86 (in Chinese).
|
| [5] |
周燕, 文世峰, 魏青松, 等. 增材制造专用模具钢粉末材料设计、制备及其制造技术[J]. 中国材料进展, 2020, 39(5): 356-363.
|
|
ZHOU Y, WEN S F, WEI Q S, et al. Design, preparation and manufacturing technology of special mold steel powder materials for additive manufacturing[J]. Materials China, 2020, 39(5): 356-363 (in Chinese).
|
| [6] |
左寒松, 李贺军, 齐乐华, 等. 铝合金微熔滴沉积成形过程中缺陷形成机理研究[J]. 稀有金属材料与工程, 2013, 42(8): 1596-1600.
|
|
ZUO H S, LI H J, QI L H, et al. Formation mechanism of defects in aluminum alloy during micro-droplet deposition[J]. Rare Metal Materials and Engineering, 2013, 42(8): 1596-1600 (in Chinese).
|
| [7] |
LIU M L, YI H, CAO H J, et al. Heat accumulation effect in metal droplet-based 3D printing: Evolution mechanism and elimination strategy[J]. Additive Manufacturing, 2021, 48: 102413.
|
| [8] |
DOU Y B, LUO J, QI L H, et al. Quantitatively characterizing the evolution of hole defects between overlapped aluminum droplets by a two-dimensional solidification model[J]. Additive Manufacturing, 2022, 60: 103202.
|
| [9] |
杜军, 吴云肖, 蒋敏博, 等. TIG电弧辅助熔滴沉积增材制造SiCp增强铝基复合材料中的熔池动力学与颗粒迁移行为[J]. 机械工程学报, 2023, 59(3): 318-327.
|
|
DU J, WU Y X, JIANG M B, et al. Molten pool dynamics and particle migration behavior during TIG-assisted droplet deposition manufacturing of SiC particle-reinforced aluminum matrix composites[J]. Journal of Mechanical Engineering, 2023, 59(3): 318-327 (in Chinese).
|
| [10] |
DU J, WANG D Q, XU S Y. Gas tungsten arc welding assisted droplet deposition manufacturing of steel/lead bimetallic structures[J]. Journal of Materials Processing Technology, 2021, 292: 117069.
|
| [11] |
廉艳平, 王潘丁, 高杰, 等. 金属增材制造若干关键力学问题研究进展[J]. 力学进展, 2021, 51(3): 648-701.
|
|
LIAN Y P, WANG P D, GAO J, et al. Fundamental mechanics problems in metal additive manufacturing: A state-of-art review[J]. Advances in Mechanics, 2021, 51(3): 648-701 (in Chinese).
|
| [12] |
欧文敏. MIG电弧增材制造过程数值模拟及成形均匀性调控研究[D]. 南京: 南京航空航天大学, 2020.
|
|
OU W M. Numerical simulation of deposit morphology and uniformity regulation research during MIG wire arc additive manufacturing[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2020 (in Chinese).
|
| [13] |
赵文勇, 曹熙勇, 杜心伟, 等. CMT电弧增材制造过程传热传质数值模拟[J]. 机械工程学报, 2022, 58(1): 267-276.
|
|
ZHAO W Y, CAO X Y, DU X W, et al. Numerical simulation of heat and mass transfer in CMT-based additive manufacturing[J]. Journal of Mechanical Engineering, 2022, 58(1): 267-276 (in Chinese).
|
| [14] |
CHEN X, WANG C, DING J L, et al. A three-dimensional wire-feeding model for heat and metal transfer, fluid flow, and bead shape in wire plasma arc additive manufacturing[J]. Journal of Manufacturing Processes, 2022, 83: 300-312.
|
| [15] |
CADIOU S, COURTOIS M, CARIN M, et al. 3D heat transfer, fluid flow and electromagnetic model for cold metal transfer wire arc additive manufacturing (Cmt-Waam)[J]. Additive Manufacturing, 2020, 36: 101541.
|
| [16] |
YI H, JIAO F R, CAO H J, et al. Numerical simulations of molten pool dynamics in wire-arc directed energy deposition processes: A review[J]. Journal of Manufacturing Processes, 2025, 134: 970-997.
|
| [17] |
CHO D W, NA S J, CHO M H, et al. A study on V-groove GMAW for various welding positions[J]. Journal of Materials Processing Technology, 2013, 213(9): 1640-1652.
|
| [18] |
NASIRI M B, BEHZADINEJAD M, LATIFI H, et al. Investigation on the influence of various welding parameters on the arc thermal efficiency of the GTAW process by calorimetric method[J]. Journal of Mechanical Science and Technology, 2014, 28(8): 3255-3261.
|