Acta Aeronautica et Astronautica Sinica ›› 2025, Vol. 46 ›› Issue (13): 531332.doi: 10.7527/S1000-6893.2024.31332
• Articles • Previous Articles
Ershen WANG1,2(
), Zexin LIU1, Deyan WANG3, Tengli YU4, Fanchen MENG3, Yayi LIU1, Song XU1
Received:2024-10-08
Revised:2024-12-30
Accepted:2025-03-28
Online:2025-03-31
Published:2025-03-28
Contact:
Ershen WANG
E-mail:wanges_2016@126.com
Supported by:CLC Number:
Ershen WANG, Zexin LIU, Deyan WANG, Tengli YU, Fanchen MENG, Yayi LIU, Song XU. Dual dynamic carrier positioning algorithm based on double factor graph and ambiguity optimization[J]. Acta Aeronautica et Astronautica Sinica, 2025, 46(13): 531332.
Table 6
Dual vehicle relative positioning results for different algorithms
| 计算结果 | 算法 | ||||||||
|---|---|---|---|---|---|---|---|---|---|
| WLK | KLK | FLK | WLPK | WBPK | FBPK | DF-AR | |||
| 定位误差/m | E向 | 最大 | 6.392 0 | 6.094 6 | 6.245 9 | 6.792 0 | 5.967 2 | 5.997 4 | 3.257 9 |
| 平均 | 1.429 6 | 1.427 6 | 1.304 9 | 1.442 3 | 1.373 6 | 1.186 1 | 0.590 0 | ||
| RMSE | 1.467 2 | 1.443 6 | 1.330 4 | 1.479 3 | 1.388 5 | 1.218 9 | 0.689 5 | ||
| N向 | 最大 | 1.406 4 | 1.320 5 | 1.266 3 | 1.336 4 | 1.211 8 | 1.179 2 | 1.127 2 | |
| 平均 | 0.701 0 | 0.673 8 | 0.560 8 | 0.630 9 | 0.608 1 | 0.468 0 | 0.325 0 | ||
| RMSE | 0.765 4 | 0.678 4 | 0.571 1 | 0.699 3 | 0.614 4 | 0.488 8 | 0.423 9 | ||
| U向 | 最大 | 8.556 4 | 11.433 5 | 8.405 4 | 11.474 3 | 11.515 1 | 8.999 2 | 4.890 0 | |
| 平均 | 0.916 3 | 0.914 5 | 0.881 1 | 0.890 4 | 0.885 6 | 0.776 4 | 0.644 9 | ||
| RMSE | 0.974 2 | 0.995 5 | 0.966 1 | 0.981 7 | 0.979 0 | 0.880 1 | 0.851 6 | ||
| 总RMSE | 1.920 3 | 1.880 2 | 1.740 6 | 1.908 2 | 1.850 0 | 1.580 9 | 1.174 9 | ||
| 总STD | 0.398 5 | 0.367 7 | 0.391 2 | 0.455 4 | 0.460 9 | 0.430 4 | 0.504 5 | ||
| 速度误差/(m·s-1) | 最大 | 8.779 0 | 11.435 7 | 8.894 8 | 11.466 6 | 11.506 7 | 8.952 0 | 4.390 8 | |
| 平均 | 0.045 3 | 0.062 2 | 0.131 2 | 0.074 8 | 0.089 3 | 0.191 9 | 0.243 6 | ||
| 加速度误差/(m·s-2) | 最大 | 19.887 5 | 23.465 8 | 19.535 6 | 23.505 2 | 23.602 0 | 19.972 5 | 5.375 5 | |
| 平均 | 0.151 0 | 0.178 6 | 0.367 4 | 0.200 2 | 0.237 1 | 0.541 3 | 0.876 2 | ||
| 固定率/% | 55.34 | 30.02 | 55.17 | 99.07 | 96.13 | 95.16 | 99.26 | ||
Table 7
Results of baseline solutions for dual vehicle positioning with different algorithms
| 算法 | 基线误差/m | 相对速度误差/(m·s-1) | ||||
|---|---|---|---|---|---|---|
| 最大 | 平均 | RMSE | STD | 最大 | 平均 | |
| WLK | 1.243 7 | 0.213 1 | 0.322 2 | 0.241 7 | 1.061 3 | 0.047 6 |
| KLK | 3.378 2 | 0.221 6 | 0.334 6 | 0.250 8 | 3.383 5 | 0.050 5 |
| FLK | 1.286 6 | 0.217 5 | 0.323 7 | 0.239 8 | 1.214 1 | 0.048 6 |
| WLPK | 3.431 7 | 0.211 0 | 0.333 1 | 0.257 9 | 3.305 6 | 0.049 5 |
| WBPK | 3.456 8 | 0.210 9 | 0.333 5 | 0.258 4 | 3.331 0 | 0.049 9 |
| FBPK | 1.253 9 | 0.202 4 | 0.307 6 | 0.231 8 | 1.390 9 | 0.060 9 |
| DF-AR | 0.197 8 | 0.010 9 | 0.027 7 | 0.025 5 | 0.205 7 | 0.005 7 |
Table 8
Relative UAV/vehicle positioning results for different algorithms
| 计算结果 | 算法 | ||||||||
|---|---|---|---|---|---|---|---|---|---|
| WLK | KLK | FLK | WLPK | WBPK | FBPK | DF-AR | |||
| 定位误差/m | E向 | 最大 | 5.708 3 | 5.576 9 | 5.586 1 | 5.317 3 | 5.190 0 | 5.172 0 | 1.623 2 |
| 平均 | 1.969 4 | 1.894 8 | 1.810 2 | 1.654 0 | 1.492 0 | 1.648 9 | 0.794 2 | ||
| RMSE | 2.147 1 | 2.075 5 | 1.974 4 | 1.844 2 | 1.694 8 | 1.809 5 | 0.855 6 | ||
| N向 | 最大 | 6.212 4 | 6.125 3 | 5.027 9 | 6.018 1 | 5.986 5 | 4.671 7 | 2.121 2 | |
| 平均 | 2.468 5 | 2.373 0 | 2.346 3 | 2.286 6 | 2.254 8 | 2.219 5 | 0.303 2 | ||
| RMSE | 2.549 4 | 2.459 2 | 2.407 0 | 2.373 7 | 2.343 3 | 2.281 7 | 0.399 0 | ||
| U向 | 最大 | 11.316 9 | 11.338 8 | 9.578 7 | 11.468 7 | 11.635 1 | 9.636 3 | 4.826 7 | |
| 平均 | 4.086 1 | 4.032 3 | 4.261 9 | 3.935 3 | 3.826 0 | 4.200 4 | 2.241 5 | ||
| RMSE | 4.386 4 | 4.335 8 | 4.549 0 | 4.245 8 | 4.145 1 | 4.504 4 | 2.383 0 | ||
| 总RMSE | 5.509 1 | 5.399 5 | 5.512 3 | 5.202 1 | 5.054 2 | 5.363 8 | 2.563 2 | ||
| 总STD | 1.410 9 | 1.417 7 | 1.443 2 | 1.420 8 | 1.423 1 | 1.450 5 | 0.711 2 | ||
| 速度误差/(m·s-1) | 最大 | 3.527 0 | 3.444 0 | 3.479 2 | 3.418 8 | 3.402 9 | 3.515 6 | 1.918 3 | |
| 平均 | 0.123 2 | 0.141 4 | 0.176 7 | 0.235 8 | 0.322 8 | 0.226 7 | 0.075 0 | ||
| 加速度误差/(m·s-2) | 最大 | 7.735 9 | 7.571 8 | 7.599 6 | 7.504 0 | 7.399 8 | 7.600 1 | 3.837 9 | |
| 平均 | 0.416 1 | 0.466 1 | 0.565 7 | 0.653 1 | 0.844 2 | 0.693 6 | 0.195 9 | ||
| 固定率% | 55.34 | 54.25 | 14.09 | 97.92 | 93.64 | 94.56 | 94.34 | ||
Table 9
UAV/vehicle baseline results for different positioning algorithms
| 算法 | 基线误差/m | 相对速度误差/(m·s-1) | ||||
|---|---|---|---|---|---|---|
| 最大 | 平均 | RMSE | STD | 最大 | 平均 | |
| WLK | 6.724 0 | 2.097 6 | 2.568 1 | 2.534 3 | 5.137 6 | 0.270 1 |
| KLK | 6.726 9 | 2.099 9 | 2.570 2 | 2.536 5 | 5.137 1 | 0.269 7 |
| FLK | 7.009 1 | 2.066 3 | 2.543 2 | 2.500 3 | 5.141 2 | 0.314 7 |
| WLPK | 6.809 2 | 2.100 5 | 2.574 6 | 2.535 8 | 5.131 3 | 0.269 6 |
| WBPK | 6.688 8 | 2.074 3 | 2.543 4 | 2.509 1 | 5.118 8 | 0.283 2 |
| FBPK | 6.756 4 | 1.768 4 | 2.328 9 | 2.408 9 | 5.167 9 | 0.335 5 |
| DF-AR | 2.402 5 | 0.670 7 | 0.830 3 | 0.887 1 | 1.949 7 | 0.129 1 |
| [1] | 张晓帆, 刘鑫, 黄婉君. 美国航母联合精确进近着舰系统[J]. 舰船科学技术, 2024, 46(2): 185-189. |
| ZHANG X F, LIU X, HUANG W J. US aircraft carrier joint precision approach and landing system[J]. Ship Science and Technology, 2024, 46(2): 185-189 (in Chinese). | |
| [2] | ZHANG L F, WANG S P, MARIA SERGEEVNA S, et al. A new adaptive Kalman filter for navigation systems of carrier-based aircraft[J]. Chinese Journal of Aeronautics, 2022, 35(1): 416-425. |
| [3] | TEUNISSEN P J G. A new method for fast carrier phase ambiguity estimation[C]∥Proceedings of 1994 IEEE Position, Location and Navigation Symposium-PLANS’94. Piscataway: IEEE Press,1994. |
| [4] | 杨卫平. 新一代飞行器导航制导与控制技术发展趋势[J]. 航空学报, 2024, 45(5): 529720. |
| YANG W P. Development trend of navigation guidance and control technology for new generation aircraft[J]. Acta Aeronautica et Astronautica Sinica, 2024, 45(5): 529720 (in Chinese). | |
| [5] | 顾海燕, 熊健. 全自动精密进近引导与传输技术研究[J]. 电讯技术, 2024, 64(7): 1102-1106. |
| GU H Y, XIONG J. Research on fully automatic precision approach guidance and transmission technology[J]. Telecommunication Engineering, 2024, 64(7): 1102-1106 (in Chinese). | |
| [6] | KRASUSKI K, CIEĆKO A, BAKUŁA M, et al. New methodology of designation the precise aircraft position based on the RTK GPS solution[J]. Sensors, 2021, 22(1): 21. |
| [7] | KRASUSKI K, CIEĆKO A, GRUNWALD G, et al. Improving positioning accuracy of aircraft using SPP method in GLONASS system[J]. Archives of Transport, 2024, 69(1): 21-37. |
| [8] | JIANG C H, CHEN Y W, JIA J X, et al. Open-source optimization method for Android smartphone single point positioning[J]. GPS Solutions, 2022, 26(3): 90. |
| [9] | KANHERE A V, GUPTA S, SHETTY A, et al. Improving GNSS positioning using neural-network-based corrections[J]. NAVIGATION: Journal of the Institute of Navigation, 2022, 69(4): 548. |
| [10] | DELLAERT F, KAESS M. Factor graphs for robot perception[J]. Foundations and Trends in Robotics, 2015, 6(1-2): 1-139. |
| [11] | WEN W S, HSU L T. Towards robust GNSS positioning and real-time kinematic using factor graph optimization[C]∥2021 IEEE International Conference on Robotics and Automation (ICRA). Piscataway: IEEE Press, 2021. |
| [12] | YAN S D, Lyu S L, LIU G, et al. Real-time kinematic positioning algorithm in graphical state space[C]∥Proceedings of the 2023 International Technical Meeting of The Institute of Navigation. Long Beach: Institute of Navigation, 2023. |
| [13] | WEN W S, ZHANG G H, HSU L T. GNSS outlier mitigation via graduated non-convexity factor graph optimization[J]. IEEE Transactions on Vehicular Technology, 2022, 71(1): 297-310. |
| [14] | CHENG Q, CHEN W, SUN R, et al. Strategy for single-epoch RTK positioning using dual frequency in urban areas[J]. IEEE Internet of Things Journal, 2024, 11(3): 4523-4534. |
| [15] | TANG H B, WAN B H, MAO X C. Multi-system real-time kinematic positioning based on fast satellite selection and improved Kalman filter[J]. Journal of Shanghai Jiaotong University (Science), 2024: 1-11. |
| [16] | TEUNISSEN P J G, JOOSTEN P, TIBERIUS C C J M. Geometry-free ambiguity success rates in case of partial fixing[C]∥Proceedings of the 1999 National Technical Meeting of the Institute of Navigation. San Diego: Institute of Navigation, 1999. |
| [17] | ZHANG X, YANG J. MPARELAM: A robust approach for ambiguity resolution in complex RTK positioning scenarios[J]. IEEE Sensors Journal, 2023, 23(17): 19582-19589. |
| [18] | TEUNISSEN P.J.G., VERHAGEN S. The GNSS ambiguity ratio-test revisited: A better way of using it[J]. Survey Review, 2009, 41(312): 138-151. |
| [19] | TAO X L, LIU W K, WANG Y Z, et al. Smartphone RTK positioning with multi-frequency and multi-constellation raw observations: GPS L1/L5, Galileo E1/E5a, BDS B1I/B1C/B2a[J]. Journal of Geodesy, 2023, 97(5): 43. |
| [20] | HOU Y Q, VERHAGEN S, WU J. A data driven partial ambiguity resolution: Two step success rate criterion, and its simulation demonstration[J]. Advances in Space Research, 2016, 58(11): 2435-2452. |
| [21] | LU L G, MA L Y, LIU W K, et al. A triple checked partial ambiguity resolution for GPS/BDS RTK positioning[J]. Sensors, 2019, 19(22): 5034. |
| [22] | CHEN C, ZHU J L, BO Y M, et al. Pedestrian smartphone navigation based on weighted graph factor optimization utilizing GPS/BDS multi-constellation[J]. Remote Sensing, 2023, 15(10): 2506. |
| [23] | 徐正鹏, 张全, 牛小骥. GNSS单点解算用于组合导航性能分析[J]. 测绘地理信息, 2019, 44(1): 32-35. |
| XU Z P, ZHANG Q, NIU X J. Analysis of integrated navigation base on GNSS single point position[J]. Journal of Geomatics, 2019, 44(1): 32-35 (in Chinese). | |
| [24] | BRACK A. Reliable GPS+BDS RTK positioning with partial ambiguity resolution[J]. GPS Solutions, 2017, 21(3): 1083-1092. |
| [25] | ZHOU Z L, LIU B Y, YANG H Z. A Hopular based weighting scheme for improving kinematic GNSS positioning in deep urban canyon[J]. Measurement Science and Technology, 2024, 35(7): 076304. |
| [26] | KHODABANDEH A, TEUNISSEN P J G. Bias-constrained integer least squares estimation: Distributional properties and applications in GNSS ambiguity resolution[J]. Journal of Geodesy, 2024, 98(5): 40. |
| [27] | MIAO W K, LI B F, GAO Y, et al. Vectorial integer bootstrapping of best integer equivariant estimation (VIB-BIE) for efficient and reliable GNSS ambiguity resolution[J]. Journal of Geodesy, 2024, 98(4): 30. |
| [28] | VERHAGEN S. On the approximation of the integer least-sqaures success rate: Which lower or upper bound to use?[J]. Journal of Global Positioning Systems, 2003, 2(2): 117-124. |
| [29] | JI S Y, WANG J, WENG D J, et al. Detailed investigation on ambiguity validation of long-distance RTK[J]. Remote Sensing, 2024, 16(16): 2982. |
| [30] | WANG Z P, HOU X P, DAN Z Q, et al. Adaptive Kalman filter based on integer ambiguity validation in moving base RTK[J]. GPS Solutions, 2022, 27(1): 34. |
| [31] | 张小红, 张元泰, 朱锋. 城市复杂场景下GNSS定位的因子图优化方法及其抗差性能分析[J]. 武汉大学学报(信息科学版), 2023, 48(7): 1050-1057. |
| ZHANG X H, ZHANG Y T, ZHU F. Factor graph optimization for urban environment GNSS positioning and robust performance analysis[J]. Geomatics and Information Science of Wuhan University, 2023, 48(7): 1050-1057 (in Chinese). |
| [1] | Chuang SHI, Zhixin WANG, Hao ZHANG, Tuan LI, Zhipeng WANG. Factor graph optimization based multi-GNSS positioning with robust variance component estimation [J]. Acta Aeronautica et Astronautica Sinica, 2025, 46(6): 531623-531623. |
| [2] | Jianhua CHENG, Sixiang CHENG, Bing QI, Shilong FAN, Guojing ZHAO, Sicheng CHEN. PPP/INS integrated navigation performance analysis in ionospheric scintillation environment [J]. Acta Aeronautica et Astronautica Sinica, 2024, 45(S1): 730676-730676. |
| [3] | Weiqing LAI, Jiuqing WAN. Distributed relative positioning of aircraft group based on path⁃sum algorithm [J]. Acta Aeronautica et Astronautica Sinica, 2024, 45(4): 328735-328735. |
| [4] | Kun LI, Shuhui BU, Xuan JIA, Yifei DONG, Lin CHEN. Relative aircraft positioning based on inertial navigation and datalink [J]. Acta Aeronautica et Astronautica Sinica, 2024, 45(15): 329594-329594. |
| [5] | LIANG Shuai, YANG Lin, YANG Zhaoxu, XU Bin. Kalman filter based T-S fuzzy control for morphing aircraft [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2020, 41(S2): 724274-724274. |
| [6] | ZHANG Hao, XIAO Yong, YANG Chaoxu, ZHANG Rui, XU Bin. Integrated navigation system based on fault detection using double state Chi-square test [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2020, 41(S2): 724271-724271. |
| [7] | FAN Yao, SHAO Xingyue, LI Qingdong, REN Zhang. Integrated 4D trajectory and attitude adaptive controller for civil aircraft [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2019, 40(2): 522437-522437. |
| [8] | REN Lei, DU Jianbang, WANG Meie. Error Analysis and Compensation of Size Effect in INS with IMU Rotation [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2013, 34(6): 1424-1435. |
| [9] | YUE Yazhou, LI Sihai, ZHANG Yachong, LIU Zhenbo, WANG Jue. Differential Inertial Filter Design and Performance Analysis for Estimation of Misalignment Angle Between Airborne Master INS and Slave INS [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2013, 34(10): 2402-2410. |
| [10] | WANG Yuegang, YANG Jiasheng, YANG Bo. SINS Initial Alignment of Swaying Base Under Geographic Latitude Uncertainty [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2012, 33(12): 2322-2329. |
| [11] | Wang Xiaogang;Guo Jifeng;Cui Naigang. Robust Sigma-point Filtering and Its Application to Relative Navigation [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2010, 31(5): 1024-1029. |
| [12] | Yang Yong;Wang Kedong;Wu Zhen;Wang Haiyong;Zhang Hong. Evaluation of Performance of ICCP Algorithm with Different Parameters [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2010, 31(5): 996-1003. |
| [13] | Yao Jing;Yi Dongyun;Zhu Jubo;Nie Pengcheng. Navigation Satellite Selection Based on Spaceborne Distributed InSAR Terrain Height Determination Precision [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2009, 30(2): 290-297. |
| [14] | Qian Weixing;Liu Jianye;Li Rongbing;Zheng Zhiming. In-flight Rapid Alignment Method of INS/GNSS Integrated Navigation System [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2009, 30(12): 2395-2400. |
| [15] | Gao Qingwei;Zhao Guorong;Wang Xibin;Wu Fang. Incorporate Modeling and Simulation of Transfer Alignment withFlexure of Carrier and Leverarm Effect [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2009, 30(11): 2172-2177. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||
Address: No.238, Baiyan Buiding, Beisihuan Zhonglu Road, Haidian District, Beijing, China
Postal code : 100083
E-mail:hkxb@buaa.edu.cn
Total visits: 6658907 Today visits: 1341All copyright © editorial office of Chinese Journal of Aeronautics
All copyright © editorial office of Chinese Journal of Aeronautics
Total visits: 6658907 Today visits: 1341

