Acta Aeronautica et Astronautica Sinica ›› 2025, Vol. 46 ›› Issue (11): 531293.doi: 10.7527/S1000-6893.2025.31293
• Articles • Previous Articles
Lin CHEN, Qing ZHU(
), Han HU, Yulin DING, Pengxin GU
Received:2024-09-30
Revised:2024-12-07
Accepted:2025-02-28
Online:2025-03-19
Published:2025-03-19
Contact:
Qing ZHU
E-mail:zhuqing@swjtu.edu.cn
Supported by:CLC Number:
Lin CHEN, Qing ZHU, Han HU, Yulin DING, Pengxin GU. FLASH: Flexible and lightweight awareness of slope hazard[J]. Acta Aeronautica et Astronautica Sinica, 2025, 46(11): 531293.
Table 1
Detailed parameter information of UAV image annotation samples corresponding to study area
| 序号 | 地区 | 已标注影像数量 | 影像尺寸/像素 | 采集时间 | 传感器类型 |
|---|---|---|---|---|---|
| 1 | 茂县新磨村 | 49 | 6 000×4 000 | 2017-06-25 | SONY ILCE-5100 |
| 2 | 九寨沟树正村 | 74 | 6 000×4 000 | 2017-08-13 | SONY ILCE-5100 |
| 3 | 九寨沟荷叶寨 | 53 | 6 000×4 000 | 2017-08-14 | SONY ILCE-5100 |
| 4 | 九寨沟上四寨村 | 50 | 6 000×4 000 | 2017-08-16 | SONY ILCE-5100 |
| 5 | 汶川阿尔寨 | 75 | 5 472×3 468 | 2018-04-18 | DJI FC6310 |
| 6 | 贵州六盘水发耳 | 82 | 5 472×3 468 | 2018-07-26 | DJI FC6310S |
| 7 | 金沙江白格 | 83 | 8 688×5 792 | 2018-11-05 | Canon EOS 5DS |
| 8 | 泸定磨西镇 | 55 | 7 952×5 304 | 2022-09-07 | SONY DSC-RX1RM2 |
| 9 | 阿坝州松潘县 | 55 | 7 952×5 304 | 2023-05-12 | SONY ILCE-7RM2 |
Table 2
Comparison of time consumption of three schemes
方案 (作业流程) | 工作 模式 | 依赖 设备 | 解译数据类型 | 影像尺寸/像素 | 数据 采集时间 | 三维重建时间 | 解译时间 | ||
|---|---|---|---|---|---|---|---|---|---|
| 影像对齐 | 密集匹配 | 生成DOM | |||||||
| 基于GF2卫星影像DOM | 离线 | 图形工作站 | 卫星影像(DOM) | 2 542×2 941 | 36 d 19 h 47 min 12 s | 20 s | |||
| 基于无人机影像DOM | 离线 | 高性能图形工作站 | 无人机影像(DOM) | 25 237×48 421 | 20 min 18 s | 3 h 45 min 4 s | 1 d 5 h 40 min 2 s | 2 min 1 s | 33 min 41 s |
| 本文方案 | 实时 | 边缘设备 | 无人机影像 | 7 952×5 304 | 78.88 ms (×366) | ||||
Table 3
Key parameter for proposed method and comparison methods
| 方法 | 影像尺寸 | 参数量/M | FLOPs /G | 推理延迟/ms | IoU/% | |
|---|---|---|---|---|---|---|
| GPU | 边缘设备 | |||||
| MobileOne-s1[23] | 1 024×1 024 | 5.13 | 17.25 | 15.92 | 355.55 | 46.17 |
| DDRNet-23-Slim[34] | 1 024×1 024 | 5.70 | 18.32 | 11.88 | 306.79 | 59.50 |
| RepVGG-A0[24] | 1 024×1 024 | 8.67 | 28.46 | 10.54 | 317.07 | 53.57 |
| DF1-Seg[36] | 1 024×1 024 | 9.37 | 4.67 | 25.21 | 68.33 | 31.90 |
| BiSeNetV1[35] | 1 024×1 024 | 13.42 | 61.04 | 20.93 | 624.52 | 59.24 |
| SFNet(ResNet18)[37] | 1 024×1 024 | 12.87 | 121.89 | 42.23 | 54.27 | |
| RepVGG-A1[24] | 1 024×1 024 | 13.16 | 49.41 | 15.83 | 371.05 | 56.00 |
| RepVGG-B0[24] | 1 024×1 024 | 14.70 | 63.90 | 20.08 | 521.60 | 50.43 |
| FCN[12] | 1 024×1 024 | 18.64 | 407.98 | 218.84 | 2 439.48 | 38.09 |
| DF2-Seg[36] | 1 024×1 024 | 18.82 | 12.18 | 12.70 | 136.19 | 33.77 |
| DDRNet-23[34] | 1 024×1 024 | 20.15 | 71.88 | 26.11 | 640.91 | 41.59 |
| RepVGG-A2[24] | 1 024×1 024 | 26.08 | 106.94 | 29.52 | 772.28 | 55.02 |
| UNet[32] | 1 024×1 024 | 34.53 | 1 048.36 | 436.59 | 2 095.92 | 31.39 |
| DeeplabV3+[33] | 1 024×1 024 | 59.23 | 354.14 | 215.09 | 2 485.54 | 59.87 |
| DDRNet-39[34] | 1 024×1 024 | 32.36 | 141.08 | 45.50 | 1 139.68 | 60.46 |
| RepVGG-B1[24] | 1 024×1 024 | 53.99 | 246.95 | 63.31 | 1 440.39 | 59.54 |
| RepVGG-B2[24] | 1 024×1 024 | 84.32 | 384.08 | 94.35 | 2 743.62 | 57.19 |
| RepVGG-B3[24] | 1 024×1 024 | 114.97 | 547.76 | 131.49 | 3 283.37 | 53.74 |
| RepFlash | 1 024×1 024 | 5.39 | 76.79 | 37.95 | 78.88 | 67.73 |
Table 4
Results of ablation study of modules on Songpan landslide dataset
| 类别 | 主干网络 | 局部特征 | 全局特征 | 参数量/M | FLOPs/G | IoU/% |
|---|---|---|---|---|---|---|
| A | MobileOne | × | × | 1.06 | 5.75 | 58.07 |
| B | MobileOne | × | DA Block | 28.66 | 458.73 | 58.26 |
| MobileOne | × | LA Block | 4.20 | 57.28 | 61.42 | |
| MobileOne | × | LGM Block | 4.21 | 57.46 | 62.26 | |
| C | MobileOne | √ | × | 2.24 | 25.07 | 59.59 |
| MobileOne | √ | DA Block | 28.92 | 463.03 | 64.56 | |
| MobileOne | √ | LA Block | 5.38 | 76.61 | 62.23 | |
| MobileOne(本文模块) | √ | LGM Block | 5.39 | 76.79 | 67.73 |
| [1] 朱庆, 曾浩炜, 丁雨淋, 等. 重大滑坡隐患分析方法综述[J]. 测绘学报, 2019, 48(12): 1551-1561. | |
| ZHU Q, ZENG H W, DING Y L, et al. A review of major potential landslide hazards analysis[J]. Acta Geodaetica et Cartographica Sinica, 2019, 48(12): 1551-1561 (in Chinese). | |
| [2] NIYOKWIRINGIRWA P, LOMBARDO L, DEWITTE O, et al. Event-based rainfall-induced landslide inventories and rainfall thresholds for Malawi[J]. Landslides, 2024, 21(6): 1403-1424. | |
| [3] WANG X, FAN X M, XU Q, et al. Change detection-based co-seismic landslide mapping through extended morphological profiles and ensemble strategy[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2022, 187: 225-239. | |
| [4] ZHOU M J, YUAN M Z, YANG G X, et al. Risk analysis of road networks under the influence of landslides by considering landslide susceptibility and road vulnerability: A case study[J]. Natural Hazards Research, 2024, 4(3): 387-400. | |
| [5] CHEN L, DING Y L, HU H, et al. Landslide extraction using fused local and nonlocal attentional features on edge device toward embedded UAV emergency response[J]. IEEE Transactions on Geoscience and Remote Sensing, 2024, 62: 5625720. | |
| [6] 朱庆, 曹振宇, 林珲, 等. 应急测绘保障体系若干关键问题研究[J]. 武汉大学学报(信息科学版), 2014, 39(5): 551-555. | |
| ZHU Q, CAO Z Y, LIN H, et al. Key technologies of emergency surveying and mapping service system[J]. Geomatics and Information Science of Wuhan University, 2014, 39(5): 551-555 (in Chinese). | |
| [7] 刘飞, 朱庆, 丁雨淋, 等. 滑坡—堰塞湖灾情无人机应急测绘、分析与险情模拟[J]. 山地学报, 2021, 39(4): 600-610. | |
| LIU F, ZHU Q, DING Y L, et al. Analysis and simulation of landslide-barrier lake disaster based on UAV emergency mapping[J]. Mountain Research, 2021, 39(4): 600-610 (in Chinese). | |
| [8] WAN Y T, ZHONG Y F, MA A L, et al. An accurate UAV 3-D path planning method for disaster emergency response based on an improved multiobjective swarm intelligence algorithm[J]. IEEE Transactions on Cybernetics, 2023, 53(4): 2658-2671. | |
| [9] ZHANG Y J, LI J, LIU J J, et al. Extraction of landslide morphology based on topographic profile along the direction of slope movement using UAV images[J]. Geomatics, Natural Hazards and Risk, 2023, 14(1): 2278276. | |
| [10] LIU P, WEI Y M, WANG Q J, et al. Research on post-earthquake landslide extraction algorithm based on improved U-Net model[J]. Remote Sensing, 2020, 12(5): 894. | |
| [11] YAO Z H, CHENG W C, ZHANG W, et al. The rise of UAV fleet technologies for emergency wireless communications in harsh environments[J]. IEEE Network, 2022, 36(4): 28-37. | |
| [12] LONG J, SHELHAMER E, DARRELL T. Fully convolutional networks for semantic segmentation[C]∥2015 IEEE Conference on Computer Vision and Pattern Recognition(CVPR). Piscataway: IEEE Press, 2015: 3431-3440. | |
| [13] BO W H, LIU J, FAN X J, et al. BASNet: Burned area segmentation network for real-time detection of damage maps in remote sensing images[J]. IEEE Transactions on Geoscience and Remote Sensing, 2022, 60: 5627913. | |
| [14] LI M L, ZHAO X K, LI J S, et al. ComNet: Combinational neural network for object detection in UAV-borne thermal images[J]. IEEE Transactions on Geoscience and Remote Sensing, 2020, 59(8): 6662-6673. | |
| [15] SANDRIC I, CHITU Z, ILINCA V, et al. Using high-resolution UAV imagery and artificial intelligence to detect and map landslide cracks automatically[J]. Landslides, 2024, 21(10): 2535-2543. | |
| [16] DONG Z Y, AN S, ZHANG J, et al. L-unet: A landslide extraction model using multi-scale feature fusion and attention mechanism[J]. Remote Sensing, 2022, 14(11): 2552. | |
| [17] CHEN H S, HE Y, ZHANG L F, et al. A landslide extraction method of channel attention mechanism U-Net network based on Sentinel-2A remote sensing images[J]. International Journal of Digital Earth, 2023, 16(1): 552-577. | |
| [18] JI S P, YU D W, SHEN C Y, et al. Landslide detection from an open satellite imagery and digital elevation model dataset using attention boosted convolutional neural networks[J]. Landslides, 2020, 17(6): 1337-1352. | |
| [19] MACENSKI S, FOOTE T, GERKEY B, et al. Robot Operating System 2: Design, architecture, and uses in the wild[J]. Science Robotics, 2022, 7(66): eabm6074. | |
| [20] CHEN Y P, DAI X Y, CHEN D D, et al. Mobile-former: Bridging MobileNet and transformer[C]∥2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Piscataway: IEEE Press, 2022. | |
| [21] MEHTA S, RASTEGARI M. MobileViT: Light-weight, general-purpose, and mobile-friendly vision transformer[C]∥International Conference on Learning Representations, 2022. | |
| [22] DEHGHANI M, ARNAB A, BEYER L, et al. The efficiency misnomer[DB/OL]. arXiv preprint: 2110.12894, 2022. | |
| [23] VASU P K A, GABRIEL J, ZHU J, et al. MobileOne: an improved one millisecond mobile backbone[C]∥2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Piscataway: IEEE Press, 2023. | |
| [24] DING X H, ZHANG X Y, MA N N, et al. RepVGG: Making VGG-style ConvNets great again[C]∥2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Piscataway: IEEE Press, 2021. | |
| [25] Vaswani A. Attention is all you need[C]∥Advances in Neural Information Processing Systems, 2017. | |
| [26] FU J, LIU J, TIAN H J, et al. Dual attention network for scene segmentation[C]∥2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Piscataway: IEEE Press, 2019. | |
| [27] KATHAROPOULOS A, VYAS A, PAPPAS N, et al. Transformers are RNNs: Fast autoregressive transformers with linear attention[C]∥International conference on machine learning, 2020. | |
| [28] HAN D C, YE T Z, HAN Y Z, et al. Agent attention: On the integration of softmax and linear attention[M]∥Computer Vision-ECCV 2024. Cham: Springer Nature Switzerland, 2024. | |
| [29] XIE E Z, WANG W H, YU Z D, et al. SegFormer: Simple and efficient design for semantic segmentation with transformers[J]. Advances in Neural Information Processing Systems, 2021, 34: 12077-12090. | |
| [30] GUO M H, LU C Z, HOU Q, et al. Segnext: Rethinking convolutional attention design for semantic segmentation[J]. Advances in Neural Information Processing Systems, 2022, 35: 1140-1156. | |
| [31] 方群生, 唐川, 程霄, 等. 汶川震区泥石流流域内滑坡物源量计算方法探讨[J]. 水利学报, 2015, 46(11): 1298-1304. | |
| FANG Q S, TANG C, CHENG X, et al. An calculation method for predicting landslides volumes of the debris flows in the Wenchuan earthquake area[J]. Journal of Hydraulic Engineering, 2015, 46(11): 1298-1304 (in Chinese). | |
| [32] RONNEBERGER O, FISCHER P, BROX T. U-Net: Convolutional networks for biomedical image segmentation[M]∥Medical Image Computing and Computer-Assisted Intervention-MICCAI 2015. Cham: Springer International Publishing, 2015: 234-241. | |
| [33] CHEN L C, ZHU Y K, PAPANDREOU G, et al. Encoder-decoder with atrous separable convolution for semantic image segmentation[C]∥Computer Vision-ECCV 2018. Cham: Springer International Publishing, 2018. | |
| [34] YAN S, WU C L, WANG L Z, et al. DDRNet: Depth map denoising and refinement for consumer depth cameras using cascaded CNNs[C]∥Computer Vision-ECCV 2018. Cham: Springer International Publishing, 2018. | |
| [35] YU C Q, WANG J B, PENG C, et al. BiSeNet: Bilateral segmentation network for real-time semantic segmentation[C]∥Computer Vision-ECCV 2018. Cham: Springer International Publishing, 2018: 334-349. | |
| [36] LI X, ZHOU Y M, PAN Z, et al. Partial order pruning: For best speed/accuracy trade-off in neural architecture search[C]∥2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Piscataway: IEEE Press, 2019. | |
| [37] LI X T, YOU A S, ZHU Z, et al. Semantic flow for fast and accurate scene parsing[M]∥Computer Vision-ECCV 2020. Cham: Springer International Publishing, 2020: 775-793. |
| [1] | Chuanyan FENG, Shuang LIU, Xiaoru WANYAN, Menglong DING, Daochun LI, Yaoming ZHOU. Research progress on key technologies for human factors design of unmanned aircraft systems [J]. Acta Aeronautica et Astronautica Sinica, 2025, 46(11): 531213-531213. |
| [2] | Guirong ZHOU, Jianyuan XU, Shaobo MA, Junyao ZONG, Jinqing SHEN, Haijie ZHU. Review of key technologies for avionics systems integration on large passenger aircraft [J]. Acta Aeronautica et Astronautica Sinica, 2024, 45(5): 529956-529956. |
| [3] | Weihong ZHANG, Changhong TANG. Lightweighting of aerospace and aeronautical equipment: Challenges and perspectives [J]. Acta Aeronautica et Astronautica Sinica, 2024, 45(5): 529965-529965. |
| [4] | Guodong XU, Danlei ZHANG, Zhendong XU. Arrival time processing method of pulsar characteristic frequency signals [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2023, 44(3): 526185-526185. |
| [5] | JIANG Bo, QU Ruokun, LI Yandong, LI Chenglong. Object detection in UAV imagery based on deep learning: Review [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2021, 42(4): 524519-524519. |
| [6] | SHEN Zhengyang, CHEN Xiaoming, HUANG Lingcai. Challenges for aircraft design due to special mission models of large-scale amphibious aircraft [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2019, 40(1): 522400-522400. |
| [7] | ZHANG Zhenhui, LI Dong, YANG Yin. Passive flow control of multi-element airfoils using slat mini-trailing edge device [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2017, 38(5): 120650-120650. |
| [8] | Zhang Weihong;Yang Jungang;Zhu Jihong. Simultaneous Topology and Shape Optimization of Pressure Loaded Structures [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2009, 30(12): 2335-2341. |
| [9] | WANG Gang-lin;WU Zhe. System Frame Research on Aircraft Conceptual Design Platform Based on Virtual Prototyping [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2005, 26(2): 162-167. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||
Address: No.238, Baiyan Buiding, Beisihuan Zhonglu Road, Haidian District, Beijing, China
Postal code : 100083
E-mail:hkxb@buaa.edu.cn
Total visits: 6658907 Today visits: 1341All copyright © editorial office of Chinese Journal of Aeronautics
All copyright © editorial office of Chinese Journal of Aeronautics
Total visits: 6658907 Today visits: 1341

