Acta Aeronautica et Astronautica Sinica ›› 2024, Vol. 45 ›› Issue (10): 129326-129326.doi: 10.7527/S1000-6893.2023.29326
• Fluid Mechanics and Flight Mechanics • Previous Articles Next Articles
Zhixing JI1(), Zhanxue WANG1, Liwen CHENG1, Jiang QIN2, He LIU2
Received:
2023-07-17
Revised:
2023-08-14
Accepted:
2023-11-14
Online:
2024-05-25
Published:
2023-11-22
Contact:
Zhixing JI
E-mail:jizhixing@nwpu.edu.cn
Supported by:
CLC Number:
Zhixing JI, Zhanxue WANG, Liwen CHENG, Jiang QIN, He LIU. Performance and matching analysis of gas turbine hybrid engine integrated with fuel cells in aviation[J]. Acta Aeronautica et Astronautica Sinica, 2024, 45(10): 129326-129326.
1 | 曹秋生, 张会军. 高空长航时无人机的发展特点及技术难点探讨[J]. 中国电子科学研究院学报, 2008, 3(1): 8-13. |
CAO Q S, ZHANG H J. Characteristics of HALE UAVs in development and discussion of existing technical difficulties[J]. Journal of China Academy of Electronics and Information Technology, 2008, 3(1): 8-13 (in Chinese). | |
2 | CIRIGLIANO D, FRISCH A M, LIU F, et al. Diesel, spark-ignition, and turboprop engines for long-duration unmanned air flights[J]. Journal of Propulsion and Power, 2018, 34(4): 878-892. |
3 | 向锦武, 阚梓, 邵浩原, 等. 长航时无人机关键技术研究进展[J]. 哈尔滨工业大学学报, 2020, 52(6): 57-77. |
XIANG J W, KAN Z, SHAO H Y, et al. A review of key technologies for long-endurance unmanned aerial vehicle[J]. Journal of Harbin Institute of Technology, 2020, 52(6): 57-77 (in Chinese). | |
4 | 于广民, 王奉明, 卢娟. 高空长航时无人机用发动机推力需求及技术特点分析[J]. 燃气涡轮试验与研究, 2021, 34(6): 41-46, 55. |
YU G M, WANG F M, LU J. Analysis of engine requirements and technical characteristics for high altitude long endurance UAV[J]. Gas Turbine Experiment and Research, 2021, 34(6): 41-46, 55 (in Chinese). | |
5 | JAIN N, LE MOINE A, CHAUSSONNET G, et al. A critical review of physical models in high temperature multiphase fluid dynamics: Turbulent transport and particle-wall interactions[J]. Applied Mechanics Reviews, 2021, 73(4): 040801. |
6 | 丁金亮. 民用飞机燃料电池技术应用现状及未来展望[J]. 军民两用技术与产品, 2019(7): 59-62. |
DING J L. Application status and future prospect of civil aircraft fuel cell technology[J]. Dual Use Technologies & Products, 2019(7): 59-62 (in Chinese). | |
7 | STROMAN R O, SCHUETTE M W, SWIDER-LYONS K, et al. Liquid hydrogen fuel system design and demonstration in a small long endurance air vehicle[J]. International Journal of Hydrogen Energy, 2014, 39(21): 11279-11290. |
8 | BAO C, WANG Y, FENG D L, et al. Macroscopic modeling of solid oxide fuel cell (SOFC) and model-based control of SOFC and gas turbine hybrid system[J]. Progress in Energy and Combustion Science, 2018, 66: 83-140. |
9 | GAMBLE D E. World record duration flight of group 2 unmanned aircraft with VTOL and hybrid propulsion system using solid oxide fuel cell[C]∥Proceedings of the AIAA Scitech 2023 Forum. Reston: AIAA, 2023. |
10 | 胡焦英, 毛军逵, 贺振宗. 基于航空煤油重整的SOFC-GT混合动力系统性能[J]. 航空动力学报, 2020, 35(2): 325-336. |
HU J Y, MAO J K, HE Z Z. Performance of the SOFC-GT hybrid system based on aviation kerosene reforming[J]. Journal of Aerospace Power, 2020, 35(2): 325-336 (in Chinese). | |
11 | 雷涛, 闵志豪, 付红杰, 等. 燃料电池无人机混合电源动态平衡能量管理策略[J]. 航空学报, 2020, 41(12): 287-301. |
LEI T, MIN Z H, FU H J, et al. Dynamic balanced energy management strategies for fuel-cell hybrid power system of unmanned air vehicle[J]. Acta Aeronautica et Astronautica Sinica, 2020, 41(12): 287-301 (in Chinese). | |
12 | ACHENBACH E, RIENSCHE E. Methane/steam reforming kinetics for solid oxide fuel cells[J]. Journal of Power Sources, 1994, 52(2): 283-288. |
13 | CAMPANARI S, IORA P. Definition and sensitivity analysis of a finite volume SOFC model for a tubular cell geometry[J]. Journal of Power Sources, 2004, 132(1-2): 113-126. |
14 | 陈宏芳, 杜建华. 高等工程热力学[M]. 北京: 清华大学出版社, 2003. |
CHEN H F, DU J H. Advanced engineering thermodynamics[M]. Beijing: Tsinghua University Press, 2003 (in Chinese). | |
15 | AGUIAR P, ADJIMAN C S, BRANDON N P. Anode-supported intermediate temperature direct internal reforming solid oxide fuel cell. I: Model-based steady-state performance[J]. Journal of Power Sources, 2004, 138(1-2): 120-136. |
16 | NAVASA M, GRAVES C, CHATZICHRISTODOULOU C, et al. A three dimensional multiphysics model of a solid oxide electrochemical cell: A tool for understanding degradation[J]. International Journal of Hydrogen Energy, 2018, 43(27): 11913-11931. |
17 | BAGUL P, RANA Z A, JENKINS K W, et al. Computational engineering analysis of external geometrical modifications on MQ-1 unmanned combat aerial vehicle[J]. Chinese Journal of Aeronautics, 2020, 33(4): 1154-1165. |
18 | MANSOURI H, OMMI F. Performance prediction of aircraft gasoline turbocharged engine at high-altitudes[J]. Applied Thermal Engineering, 2019, 156: 587-596. |
19 | CAVCAR M. Bréguet range equation?[J]. Journal of Aircraft, 2006, 43(5): 1542-1544. |
20 | JI Z X, QIN J, CHENG K L, et al. A comprehensive evaluation of ducted fan hybrid engines integrated with fuel cells for sustainable aviation[J]. Renewable and Sustainable Energy Reviews, 2023, 185: 113567. |
21 | COLLINS J M, MCLARTY D. All-electric commercial aviation with solid oxide fuel cell-gas turbine-battery hybrids[J]. Applied Energy, 2020, 265: 114787. |
22 | GESELL H, WOLTERS F, PLOHR M. System analysis of turbo-electric and hybrid-electric propulsion systems on a regional aircraft[J]. The Aeronautical Journal, 2019, 123(1268): 1602-1617. |
23 | JI Z X, ROKNI M M, QIN J, et al. Energy and configuration management strategy for battery/fuel cell/jet engine hybrid propulsion and power systems on aircraft[J]. Energy Conversion and Management, 2020, 225: 113393. |
24 | HASHIMOTO S, HIROTA T, SUZUKI K, et al. Material development strategy of lightweight solid oxide fuel cells for airplane system electrification[J]. ECS Transactions, 2019, 91(1): 311-318. |
25 | NASA. NASA high power density solid oxide fuel cell[R]. Washington, D.C.: NASA, 2023. |
26 | HILDING T. WSU researchers advance fuel cell technology[EB/OL]. (2020-06-08)[2023-07-17]. . |
27 | WATERS D F. Modeling of gas turbine-solid oxide fuel cell systems for combined propulsion and power on aircraft[D]. College Park: University of Maryland, 2015. |
[1] | LI Guanxiong, WANG Jingyu, WANG Yuntao. Parametric study on buoyancy-lifting aerial vehicle with low pressure energy storage method [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2021, 42(7): 224438-224438. |
[2] | ZHAO Dongdong, ZHAO Guosheng, XIA Lei, FANG Chun, MA Rui, HUANGFU Yigeng. Modeling and control of fuel cell cathode gas supply system for UAV [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2021, 42(7): 324659-324659. |
[3] | XIANG Qian, ZHANG Xiaohui, WANG Zhengping, LIU Li. Control method of small fuel cells for UAVs [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2021, 42(3): 623960-623960. |
[4] | LIU Li, CAO Xiao, ZHANG Xiaohui, HE Yuntao. Review of development of light and small scale solar/hydrogen powered unmanned aerial vehicles [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2020, 41(3): 623474-623474. |
[5] | ZHANG Xiaohui, LIU Li, DAI Yueling. Coupling effect of energy management and flight state for fuel cell powered UAVs [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2019, 40(7): 222793-222793. |
[6] | ZHANG Xiaohui, LIU Li, Dai Yueling, SHEN Hui. Design and test of propulsion system for fuel cell powered UAVs [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2018, 39(8): 221874-221874. |
[7] | TANG Wei, SONG Bifeng, CAO Yu, YANG Wenqing. Preliminary design method for miniature electric-powered vertical take-off and landing unmanned airial vehicle and effects of special parameters [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2017, 38(10): 220972-220972. |
[8] | ZHANG Jian, ZHANG Dehu. Essentials of configuration design of HALE solar-powered UAVs [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2016, 37(S1): 1-7. |
[9] | WANG Kelei, ZHU Xiaoping, ZHOU Zhou, WANG Hongbo. Distributed electric propulsion slipstream aerodynamic effects at low Reynolds number [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2016, 37(9): 2669-2678. |
[10] | LIU Li, DU Mengyao, ZHANG Xiaohui, ZHANG Chao, XU Guangtong, WANG Zhengping. Conceptual design and energy management strategy for UAV with hybrid solar and hydrogen energy [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2016, 37(1): 144-162. |
[11] | MA Dongli, BAO Wenzhuo, QIAO Yuhang. Study of Solar-powered Aircraft Configuration Beneficial to Winter Flight [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2014, 35(6): 1581-1591. |
[12] | WANG Shengnan, LI Yunze, ZHOU Hang, ZHOU Guodong. Characteristic Analysis of Extravehicular Spacesuit Life Support Cooling-power Integrated System [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2013, 34(6): 1285-1292. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
Address: No.238, Baiyan Buiding, Beisihuan Zhonglu Road, Haidian District, Beijing, China
Postal code : 100083
E-mail:hkxb@buaa.edu.cn
Total visits: 6658907 Today visits: 1341All copyright © editorial office of Chinese Journal of Aeronautics
All copyright © editorial office of Chinese Journal of Aeronautics
Total visits: 6658907 Today visits: 1341