Acta Aeronautica et Astronautica Sinica ›› 2024, Vol. 45 ›› Issue (21): 628970.doi: 10.7527/S1000-6893.2023.28970
• Special Topic: Aero-engine Digital Twin • Previous Articles Next Articles
Hao QI1, Xiaoyue LI1(
), Qiang TAO1, Liang LI2
Received:2023-05-06
Revised:2023-06-23
Accepted:2023-08-14
Online:2024-11-15
Published:2023-09-06
Contact:
Xiaoyue LI
E-mail:xiaoyuelee@qdu.edu.cn
Supported by:CLC Number:
Hao QI, Xiaoyue LI, Qiang TAO, Liang LI. Research progress of mechanical process system driven by digital twin[J]. Acta Aeronautica et Astronautica Sinica, 2024, 45(21): 628970.
Table 1
Definition of digital twin
| 机构/研究者 | 年份 | 定义 |
|---|---|---|
| 美国空军研究实验室和NASA[ | 2011 | 一种面向飞行器或系统的高集成度多物理场、多尺度、多概率的仿真模型,能够利用物理模型、传感器数据和历史数据等反映与该模型对应实体的功能、实时状态及演变趋势。 |
| Glaessgen和Stargel[ | 2012 | 数字孪生是一个综合多物理、多尺度、多概率模拟的复杂系统,使用最佳的物理模型、传感器更新和飞行器历史数据等镜像其飞行器数字孪生的生命。 |
| 赵敏[ | 2016 | 物理世界的大多数物理实体产品将会在数字世界中有一个自己的 “镜像”式数字产品,可以通过数字虚体世界来精确控制、智能驱动物理实体世界中的任何设备。通过状态感知、分析计算、自我决策、精准执行、学习提升来实现人造技术系统的人造智能。 |
| 庄存波等[ | 2017 | 产品数字孪生体通过集成设计/仿真、生产制造及使用,能够实现产品业务流程的全程可视化,规划细节,规避问题,闭合环路,优化整个系统。 |
| 陶飞等[ | 2018 | 数字孪生是一种集成多物理、多尺度、多学科属性,具有实时同步映射、高保真度特性,能够实现物理世界与信息世界交互与融合的技术手段。 |
| 西门子[ | 2022 | 产品数字化、生产工艺流程数字化、设备数字化、数字孪生应完整再现整个企业。 |
ISO DIS 23247[ | 2022 | 数字孪生是现实事物(或过程)具有特定目的的数字化表达,并通过适当频率的同步使物理实体与数字实例趋向一致。 |
| 1 | 周啸宇. 基于递归分析的机械加工过程状态监测[D]. 南昌: 南昌大学, 2022. |
| ZHOU X Y. State monitoring of machining process based on recurrence analysis[D]. Nanchang: Nanchang University, 2022 (in Chinese). | |
| 2 | 吴定海, 任国全, 王怀光, 等. 基于卷积神经网络的机械故障诊断方法综述[J]. 机械强度, 2020, 42(5): 1024-1032. |
| WU D H, REN G Q, WANG H G, et al. The review of mechanical fault diagnosis methods based on convolutional neural network[J]. Journal of Mechanical Strength, 2020, 42(5): 1024-1032 (in Chinese). | |
| 3 | 杨长远, 马赛, 韩勤锴. 基于多核监督流形学习的旋转机械故障诊断[J]. 航空动力学报, 2024, 39(10): 20220184. |
| YANG C Y, MA S, HAN Q K. Multi-kernel supervised manifold learning for rotating machinery fault diagnosis[J]. Journal of Aerospace Power, 2024, 39(10): 20220184. | |
| 4 | 曹明, 黄金泉, 周健, 等. 民用航空发动机故障诊断与健康管理现状、挑战与机遇Ⅰ: 气路、机械和FADEC系统故障诊断与预测[J]. 航空学报, 2022, 43(9): 625573. |
| CAO M, HUANG J Q, ZHOU J, et al. Current status, challenges and opportunities of civil aero-engine diagnostics & health management I: Diagnosis and prognosis of engine gas path, mechanical and FADEC[J]. Acta Aeronautica et Astronautica Sinica, 2022, 43(9): 625573 (in Chinese). | |
| 5 | 蒋栋年, 李炜. 多模型粒子滤波融合的机械系统寿命预测[J]. 控制工程, 2019, 26(3): 448-453. |
| JIANG D N, LI W. Research on remaining useful life prediction of mechanical systems based on fusion of multi-model particle filter[J]. Control Engineering of China, 2019, 26(3): 448-453 (in Chinese). | |
| 6 | 郑刚, 饶金山, 吴雁, 等. 薄壁叶片侧铣变形误差补偿及刀位规划研究[J]. 制造技术与机床, 2021, 706(4): 126-130. |
| ZHENG G, RAO J S, WU Y, et al. Research on error compensation of flank milling deformation and tool path planning of thin-walled blade[J]. Manufacturing Technology & Machine Tool, 2021, 706(4): 126-130 (in Chinese). | |
| 7 | 段飞宇. 基于复杂直纹面精加工的变形误差补偿及刀位优化研究[D]. 成都: 电子科技大学, 2020. |
| DUAN F Y. Research on the compensation of deformation error and the optimization of tool position based on the fine machining of complex ruled surface[D]. Chengdu: University of Electronic Science and Technology of China, 2020 (in Chinese). | |
| 8 | 丁军, 古愉川, 黄霞, 等. 基于改进遗传算法优化人工神经网络的304不锈钢流变应力预测准确性研究[J]. 机械工程学报, 2022, 58(10): 78-86. |
| DING J, GU Y C, HUANG X, et al. Research on prediction accuracy of flow stress of 304 stainless steel based on artificial neural network optimized by improved genetic algorithm[J]. Journal of Mechanical Engineering, 2022, 58(10): 78-86 (in Chinese). | |
| 9 | 曾莎莎, 彭卫平, 雷金. 基于混合算法的薄壁件铣削加工工艺参数优化[J]. 中国机械工程, 2017, 28(7): 842-845, 851. |
| ZENG S S, PENG W P, LEI J. Optimization of milling process parameters based on hybrid algorithm for thin-walled workpieces[J]. China Mechanical Engineering, 2017, 28(7): 842-845, 851 (in Chinese). | |
| 10 | 陶飞, 张贺, 戚庆林, 等. 数字孪生十问: 分析与思考[J]. 计算机集成制造系统, 2020, 26(1): 1-17. |
| TAO F, ZHANG H, QI Q L, et al. Ten questions towards digital twin: analysis and thinking[J]. Computer Integrated Manufacturing Systems, 2020, 26(1): 1-17 (in Chinese). | |
| 11 | UEGEL E J, INGRAFFEA A R, EASON T G, et al. Reengineering aircraft structural life prediction using a digital twin[J]. International Journal of Aerospace Engineering, 2011, 2011: 1-14. |
| 12 | GLAESSGREN E H, STARGEL D. The digital twin paradigm for future NASA and U.S. air force vehicles[C]∥53rd AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics and Materials Conference - Special Session on the Digital Twin. 2012. |
| 13 | 赵敏. 数字虚体, 智能革命的助推器——解读《三体智能革命》[J]. 中国机械工程, 2018, 29(1): 110-119. |
| ZHAO M. Digital virtual body, booster of intelligent revolution-interpretation of “three-body intelligent revolution”[J]. China Mechanical Engineering, 2018, 29(1): 110-119 (in Chinese). | |
| 14 | 庄存波, 刘检华, 熊辉, 等. 产品数字孪生体的内涵、 体系结构及其发展趋势[J]. 计算机集成制造系统, 2017, 23(4): 753-768. |
| ZHUANG C B, LIU J H, XIONG H, et al. Connotation, architecture and trends of product digital twin[J]. Computer Integrated Manufacturing Systems. 2017, 23(4): 753-768 (in Chinese). | |
| 15 | 陶飞, 刘蔚然, 刘检华, 等. 数字孪生及其应用探索[J]. 计算机集成制造系统, 2018, 24(1): 1-18. |
| TAO F, LIU W R, LIU J H, et al. Digital twin and its potential application exploration[J]. Computer Integrated Manufacturing Systems, 2018, 24(1): 1-18 (in Chinese). | |
| 16 | 工业数字孪生白皮书发布[J]. 工业控制计算机, 2021, 34(12): 19. |
| Industrial digital twin white paper release[J]. Industrial Control Computer, 2021, 34 (12): 19 (in Chinese). | |
| 17 | 刘晓冰, 王姝婷, 白朝阳. 基于科学知识图谱的数字孪生发展可视化分析[J]. 计算机集成制造系统, 2022, 28(6): 1673-1684. |
| LIU X B, WANG S T, Bai Z Y. Visual analysis of digital twin development based on scientific knowledge graph[J]. Computer Integrated Manufacturing Systems, 2022, 28(6): 1673-1684 (in Chinese). | |
| 18 | 郭万林. 机械产品全生命周期设计[J]. 中国机械工程, 2002(13): 79-84, 6. |
| GUO W L. The total lifecycle design of mechanical products[J]. China Mechanical Engineering, 2002(13): 79-84, 6 (in Chinese). | |
| 19 | LI J J, ZHOU G H, ZHANG C. A twin data and knowledge-driven intelligent process planning framework of aviation parts[J]. International Journal of Production Research. 2022, 60(17): 5217-34. |
| 20 | 王乐, 周军, 崔艳林. 数字孪生在航空发动机领域的应用分析[J]. 航空动力, 2020, 16(5): 63-66. |
| WANG L, ZHOU J, CUI Y L. Application of digital twin in aero engine[J]. Aerospace Power, 2020, 16(5): 63-66 (in Chinese). | |
| 21 | 张俊涛. 基于数字孪生的薄壁件铣削加工变形控制研究[D]. 哈尔滨: 哈尔滨理工大学, 2022. |
| ZHANG J T. Research on deformation control in thin wall milling based on digital twin[D]. Harbin: Harbin University of Science and Technology, 2022 (in Chinese). | |
| 22 | 陶飞, 刘蔚然, 张萌 等. 数字孪生五维模型及十大领域应用[J]. 计算机集成制造系统, 2019, 25(1): 1-18. |
| TAO F, LIU W R, ZAHNG M, et al. Five-dimension digital twin model and its ten applications[J]. Computer Integrated Manufacturing Systems, 2019, 25(1): 1-18 (in Chinese). | |
| 23 | BRAND M V, CLEOPHAS L, GUNASEKARAN R, et al. Models meet data: challenges to create virtual entities for digital twins[C]∥2021 ACM/IEEE International Conference on Model Driven Engineering Languages and Systems Companion (MODELS-C). 2021: 225-228. |
| 24 | GHOSH A K, ULLAH A S, TETL R, et al. Developing sensor signal-based digital twins for intelligent machine tools[J]. Journal of Industrial Information Integration, 2021, 24: 100242. |
| 25 | 陶飞, 马昕, 戚庆林, 等. 数字孪生连接交互理论与关键技术[J]. 计算机集成制造系统, 2023, 29(1): 1-10. |
| TAO F, MA X, QI Q L, et al. Theory and key technologies of digital twin connection interaction[J]. Computer Integrated Manufacturing System, 2023, 29(1): 1-10 (in Chinese). | |
| 26 | 钟华. 数控铣床数字孪生连接系统研究[D]. 南昌: 南昌大学, 2022. |
| ZHONG H. Research on the digital twin connection system of CNC milling machine[D]. Nanchang: Nanchang University, 2022 (in Chinese). | |
| 27 | QI Q L, TAO F, NEE A Y C. Chapter 1 - From service to digital twin service[M]. TAO F, QI Q L, NEE A Y C, editors. Digital twin driven service. Elsevier: Academic Press, 2022:1-31. |
| 28 | XIANG F, FAN J, KE S Q, et al. Chapter 2 - Digital twin-driven service collaboration[M]. TAO F, QI Q L, NEE A Y C, editors. Digital twin driven service. Elsevier: Academic Press, 2022: 33-58. |
| 29 | LI H, WANG H Q. Chapter 3 - Digital twin-driven production line custom design service[M]. TAO F, QI Q L, NEE A Y C, editors. Digital twin driven service. Elsevier: Academic Press, 2022: 59-88. |
| 30 | HONG L K Y, ZHENG P, LIEW D W. Chapter 4 - Digital twin-enhanced product family design and optimization service[M]. TAO F, QI Q L, NEE A Y C, editors. Digital twin driven service. Elsevier: Academic Press, 2022: 89-118. |
| 31 | LIU M, FANG S, DONG H, et al. Review of digital twin about concepts, technologies, and industrial applications[J]. Journal of Manufacturing Systems, 2021, 58: 346-361. |
| 32 | 刘永泉, 黎旭, 任文成, 等. 数字孪生助力航空发动机跨越发展[J]. 航空动力, 2021, 19(2): 24-29. |
| LIU Y Q, LI X, REN W C, et al. Digital twin boosting leap-forward development of aero engine[J]. Aerospace Power, 2021, 19(2): 24-29 (in Chinese). | |
| 33 | 吴雄, 彭云龙, 张波, 等. 基于数字孪生的舰载机发动机健康管理技术[J]. 航空动力, 2022, 27(4): 33-36. |
| WU X, PENG Y L, ZHANG B, et al. Aero engine health management technology based on digital twin[J]. Aerospace Power, 2022, 27(4): 33-36 (in Chinese). | |
| 34 | 李聪波, 孙鑫, 侯晓博, 等. 数字孪生驱动的数控铣削刀具磨损在线监测方法[J]. 中国机械工程, 2022, 33(1): 78-87. |
| LI C B, SUN X, HOU X B, et al. Online monitoring method for NC milling tool wear by digital twin-driven[J]. China Mechanical Engineering, 33(1), 2022: 78-87 (in Chinese). | |
| 35 | 路遥. 大型轴承座铣削加工过程中数字孪生监控系统研究[D]. 哈尔滨: 哈尔滨理工大学, 2022. |
| LU Y. Research on digital twin monitoring system during milling of large bearing block[D]. Harbin: Harbin University of Science and Technology, 2022 (in Chinese). | |
| 36 | 李小龙. 基于数字孪生的机床加工过程虚拟监控系统研究与实现[D]. 成都: 电子科技大学, 2020. |
| LI X L. Research and implementation of a virtual monitoring system for machine tools process based on digital twin[D]. Chengdu: University of Electronic Science and Technology of China, 2020 (in Chinese). | |
| 37 | 姜静. 基于数字孪生的数控机床加工路径优化方法研究[D]. 武汉: 武汉理工大学, 2019. |
| JIANG J. Research on machining path method of CNC machine tools based on digital twin [D]. Wuhan: Wuhan University of Technology, 2019 (in Chinese). | |
| 38 | 张雷, 刘检华, 庄存波, 等. 基于数字孪生的多轴数控机床轮廓误差抑制方法[J]. 计算机集成制造系统, 2021, 27(12): 3391-3402. |
| ZHANG L, LIU J H, ZHUANG C B, et al. Contour error reduction method for multi-axis CNC machine tools based on digital twin[J]. Computer Integrated Manufacturing Systems, 2021, 27(12): 3391-3402 (in Chinese). | |
| 39 | 赵丽丽. 基于数字孪生的数控加工切削参数优化方法研究[D]. 武汉: 武汉理工大学, 2021. |
| ZHAO L L. Research on cutting parameter optimization method of CNC machining based on digital twin[D]. Wuhan: Wuhan University of Technology, 2021 (in Chinese). | |
| 40 | 李典伦. 基于数字孪生技术的数控机床虚实交互监控系统设计与研究[D]. 兰州: 兰州理工大学, 2021. |
| LI D L. Design and research of virtual and real interactive monitoring system for CNC machine tools based on digital twin technology[D]. Lanzhou: Lanzhou University of Technology, 2021 (in Chinese). | |
| 41 | 江雪梅, 袁子航, 娄平, 等. 一种基于数字孪生的重型数控机床碰撞检测方法[J]. 中国机械工程, 2022, 33(22): 2647-2654, 2663. |
| JIANG X M, YUAN Z H, LOU P, et al. A collision detection method of heavy-duty CNC machine tools based on digital twin[J]. China Mechanical Engineering, 2022, 33(22): 2647-2654, 2663 (in Chinese). | |
| 42 | 刘劲松. 高档数控机床数字孪生关键技术研究与应用[D]. 沈阳: 中国科学院大学(中国科学院沈阳计算技术研究所), 2022. |
| LIU J S. Research and application of key technology of digital twin for high-end CNC machine tools[D]. Shenyang: University of Chinese Academy of Sciences (Shenyang Institute of Computing Technology, Chinese Academy of Sciences), 2022 (in Chinese). | |
| 43 | MA X, TAO F, ZHANG M, et al. Digital twin enhanced human-machine interaction in product lifecycle[J]. Procedia CIRP, 2019, 83: 789-793. |
| 44 | DUAN J G, MA T Y, ZAHNG Q L, et al. Design and application of digital twin system for the blade-rotor test rig[J]. Journal of Intelligent Manufacturing. 2023; 34(2): 753-769. |
| 45 | 孙明波, 安彬, 汪洪波, 等. 超燃冲压发动机仿真:从数值飞行到数智飞行[J]. 力学学报, 2022, 54(3): 588-600. |
| SUN M B, AN B, WANG H B, et al. Numerical simulation of the scramjet engine: from numerical flight to intelligent numerical flight[J]. Chinese Journal of Theoretical and Applied Mechanics, 2022, 54(3): 588-600 (in Chinese). | |
| 46 | 田效康. 基于数字孪生的机床加工过程虚拟仿真监控系统研究与实现[D]. 成都: 电子科技大学, 2021. |
| TIAN X K. Research and implementation of virtual simulation monitoring system for machine tool machining process based on digital twin[D]. Chengdu: University of Electronic Science and Technology of China, 2021 (in Chinese). | |
| 47 | 田凌, 郑孟蕾, 代菁洲, 等. 基于图数据库的机械产品数字孪生模型分层建模方法: CN111881578A[P]. 2020-11-03. |
| TIAN L, ZHENG M L, DAI J Z, et al. A layered modeling method for digital twin models of mechanical products based on graph database: CN111881578A[P]. 2020-11-03 (in Chinese). | |
| 48 | 郑孟蕾, 田凌. 基于时序数据库的产品数字孪生模型海量动态数据建模方法[J]. 清华大学学报(自然科学版), 2021, 61(11): 1281-1288. |
| ZHENG M L, TIAN L. Digital product twin modeling of massive dynamic data based on a time-series database[J]. Journal of Tsinghua University(Science and Technology), 2021, 61(11): 1281-1288 (in Chinese). | |
| 49 | 郑孟蕾, 田凌. 基于区块链的机械产品数字孪生本体模型协同演进方法[J]. 计算机集成制造系统, 2023, 29(6): 1781-1794. |
| ZHENG M L, TIAN L. Blockchain-based collaborative evolution method for digital twin ontology model of mechanical products[J]. Computer Integrated Manufacturing Systems, 2023, 29(6): 1781-1794 (in Chinese). | |
| 50 | YAGCI T, HOSCHLER K, PANNIER S, et al. A structural health monitoring (SHM) approach using a multidisciplinary digital twin for high-pressure turbine discs in civil aviation[C]∥The 7th International Conference on Integrity-Reliability-Failure (IRF). 2020: 491-502. |
| 51 | HU W Y, WANG T Y, CHU F L, A Wasserstein generative digital twin model in health monitoring of rotating machines[J]. Computers in Industry, 2023, 145: 103807. |
| 52 | LIANG Z S, WANG S T, PENG Y L, et al. The process correlation interaction construction of Digital Twin for dynamic characteristics of machine tool structures with multi-dimensional variables[J]. Journal of Manufacturing Systems, 2022, 63: 78-94. |
| 53 | YU J S, SONG Y, TANG D Y, et al. A digital twin approach based on nonparametric Bayesian network for complex system health monitoring[J]. Journal of Manufacturing Systems, 2021, 58: 293-304. |
| 54 | 刘世民, 孙学民, 陆玉前, 等. 知识驱动的加工产品数字孪生拟态建模方法[J]. 机械工程学报, 2021, 57(23): 182-194. |
| LIU S M, SUN X M, LU Y Q, et al. A knowledge-driven digital twin modeling method for machining products based on biomimicry[J]. Journal of Mechanical Engineering, 2021, 57(23): 182-194 (in Chinese). | |
| 55 | LIU S M, BAO J, LU Y Q, et al. Digital twin modeling method based on biomimicry for machining aerospace components[J]. Journal of Manufacturing Systems, 2020,58:180-195. |
| 56 | LIU S M, SHEN H, LI J, et al. An adaptive evolutionary framework for the decision-making models of digital twin machining system[C]∥2021 IEEE 17th International Conference on Automation Science and Engineering (CASE). 2021: 771-776. |
| 57 | 李琳利, 李浩, 顾复, 等. 基于数字孪生的复杂机械产品多学科协同设计建模技术[J]. 计算机集成制造系统, 2019, 25(6): 1307-1319. |
| LI L L, LI H, GU F, et al. Multidisciplinary collaborative design modeling technologies for complex mechanical products based on digital twin[J]. Computer Integrated Manufacturing Systems, 2019, 25(6): 1307-1319 (in Chinese). | |
| 58 | 沈慧, 刘世民, 许敏俊, 等. 面向加工领域的数字孪生模型自适应迁移方法[J]. 上海交通大学学报, 2022, 56(1): 70-80. |
| SHEN H, LIU S M, XU M J, et al. Adaptive transferring method of digital twin model for machining domain[J]. Journal of Shanghai Jiao Tong University, 2022, 56(1): 70-80 (in Chinese). | |
| 59 | 孙惠斌, 潘军林, 张纪铎, 等. 面向切削过程的刀具数字孪生模型[J]. 计算机集成制造系统, 2019, 25(6): 1474-1480. |
| SUN H B, PAN J L, ZHANG J D, et al. Digital twin model for cutting tools in machining process[J]. Computer Integrated Manufacturing Systems, 2019, 25(6): 1474-1480 (in Chinese). | |
| 60 | 张辰源, 陶飞. 数字孪生模型评价指标体系[J]. 计算机集成制造系统, 2021, 27(8): 2171-2186. |
| ZHANG C Y, TAO F. Evaluation index system for digital twin model[J]. Computer Integrated Manufacturing Systems, 2021, 27(8): 2171-2186 (in Chinese). | |
| 61 | BRAUN D, MVLLER T, SAHLAB N, et al. A graph-based knowledge representation and pattern mining supporting the digital twin creation of existing manufacturing systems[C]∥2022 IEEE 27th International Conference on Emerging Technologies and Factory Automation (ETFA). 2022: 1-4. |
| 62 | 惠恩明. 数控机床数字孪生自主感知技术研究[D]. 武汉: 华中科技大学, 2020. |
| HUI E M. Research on digital twin self-awaring technology of NC machine tools[D]. Wuhan: Huazhong University of Science and Technology, 2020 (in Chinese). | |
| 63 | 付洋, 曹宏瑞, 郜伟强, 等. 数字孪生驱动的航空发动机涡轮盘剩余寿命预测[J]. 机械工程学报, 2021, 57(22): 106-113. |
| FU Y, CAO H R, GAO W Q, et al. Digital twin driven remaining useful life prediction for aero-engine turbine discs[J]. Journal of Mechanical Engineering, 2021, 57(22): 106-113 (in Chinese). | |
| 64 | 巩超光, 胡天亮, 叶瑛歆. 基于数字孪生的铣削参数动态多目标优化策略[J]. 计算机集成制造系统, 2021, 27(2): 478-486. |
| GONG C G, HU T L, YE Y X. Dynamic multi-objective optimization strategy of milling parameters based on digital twin[J]. Computer Integrated Manufacturing Systems, 2021, 27(2): 478-486 (in Chinese). | |
| 65 | 胡富琴, 杨芸, 刘世民, 等. 航天薄壁件旋压成型数字孪生高保真建模方法[J]. 计算机集成制造系统, 2022, 28(5): 1282-1292. |
| HU F Q, YANG Y, LIU S M, et al. Digital twin high-fidelity modeling method for spinning forming of aerospace thin-walled parts[J]. Computer Integrated Manufacturing Systems, 2022, 28(5): 1282-1292 (in Chinese). | |
| 66 | 马兴瑞. 基于数字孪生模型的轴承故障特征生成与诊断方法研究[D]. 济南: 山东大学, 2022. |
| MA X R. Research on fault feature generation and fault diagnosis based on digital twin model of bearing[D]. Ji’nan: Shandong University, 2022 (in Chinese). | |
| 67 | 宋飞虎, 王梦柯, 尹静, 等. 基于数字孪生控制的精密机床热误差模型[J]. 机电工程, 2023, 40(3): 391-398. |
| SONG F H, WANG M K, YIN J, et al. Thermal error model for precision machine tools based on digital twin control[J]. Journal Mechanical and Electrical Engineering: 2023, 40(3): 391-398 (in Chinese). | |
| 68 | 拓云天, 崔洁, 王津沓, 等. 基于数字孪生的滚动轴承健康状态预测[J]. 制造技术与机床, 2022, 725(11): 156-162. |
| TUO Y T. , CUI J, WANG J T, et al Predicting the health prediction of rolling bearings based on digital twin[J]. Manufacturing Technology and Machine Tool, 2022, 725(11): 156-162 (in Chinese). | |
| 69 | LIU S M, LU Y Q, ZHENG P, et al. Adaptive reconstruction of digital twins for machining systems: A transfer learning approach[J]. Robotics and Computer-Integrated Manufacturing, 2022, 78: 102390. |
| 70 | 张海军, 闫琼, 张国辉, 等. 基于数字孪生的制造资源动态优选决策[J]. 计算机集成制造系统, 2021, 27(2): 521-535. |
| ZHANG H J, YAN Q, ZHANG G H, et al. Dynamic decision-making of manufacturing resource based on digital twin[J]. Computer Integrated Manufacturing Systems, 2021, 27(2): 521-535 (in Chinese). | |
| 71 | 刘魁, 刘婷, 魏杰, 等. 数字孪生在航空发动机可靠性领域的应用探索[J]. 航空动力, 2019, 9(4): 61-64. |
| LIU K, LIU T, WEI J, et al. Digital twin and its potential application in the field of aero engine reliability[J]. Aerospace Power, 2019, 9(4): 61-64 (in Chinese). | |
| 72 | 刘婷, 张建超, 刘魁. 基于数字孪生的航空发动机全生命周期管理[J]. 航空动力, 2018, 1(1): 52-56. |
| LIU T, ZHANG J C, LIU K. Aero engine life cycle management based on digital twin[J]. Aerospace Power 2018, 1(1): 52-56 (in Chinese). | |
| 73 | 曹增义, 单继东, 王昭阳, 等. 面向航空发动机制造的数字孪生应用架构探索与实践[J]. 航空制造技术, 2022, 65(19): 40-49. |
| CAO Z Y, SHAN J D, WANG Z Y, et al. Exploration and practice of digital twin architecture for aero-engine manufacturing[J]. Aeronautical Manufacturing Technology, 2022, 65(19): 40-49 (in Chinese). | |
| 74 | 任祝寅, 周华, 张健, 等. 数字孪生在航空发动机燃烧室设计阶段的应用与展望[J]. 航空制造技术, 2022, 65(17): 34-39. |
| REN Z Y, ZHOU H, ZHANG J, et al. Application and prospect of digital twin in design phase of aero-engine combustion chambers[J]. Aeronautical Manufacturing Technology 2022, 65(17): 34-39 (in Chinese). | |
| 75 | ZHANG M, SUI F Y, LIU A, et al. Chapter 1 - Digital twin driven smart product design framework[M]. TAOF, LIUA, HUT L, NEEAY C, editors. Digital twin driven smart design. Elsevier: Academic Press, 2020: 3-32. |
| 76 | WANG Y C, LIU A, TAO F, et al. Chapter 2 - Digital twin driven conceptual design[M]. TAO F, LIU A, HU T L, et al. editors. Digital twin driven smart design. Elsevier: Academic Press, 2020: 33-66. |
| 77 | WANG Y C, LIU L, LIU A. Chapter 3 - Conceptual design driven digital twin configuration[M]. TAO F, LIU A, HU T L, et al. editors. Digital twin driven smart design. Elsevier: Academic Press, 2020: 67-107. |
| 78 | WANG L, TAO F, LIU A, et al. Chapter 5 - Digital twin driven design evaluation[M]. In: TAO F, LIU A, HU T L, et al. editors. Digital twin driven smart design. Elsevier: Academic Press, 2020: 139-164. |
| 79 | XIANG F, HUANG Y Y, ZHANG Z, et al. Chapter 6 - Digital twin driven energy-aware green design[M]. TAO F, LIU A, HU T L, et al. editors. Digital twin driven smart design. Elsevier: Academic Press, 2020: 165-184. |
| 80 | HU T L, KONG T X, YE Y X, et al. Chapter 9 - Digital twin based computerized numerical control machine tool virtual prototype design[M]. TAO F, LIU A, HU T L, et al. editors. Digital twin driven smart design. Elsevier: Academic Press, 2020: 237-263. |
| 81 | WEI Y L, HU T L, ZHANG W L, et al. Chapter 10 - Digital twin driven lean design for computerized numerical control machine tools[M]. TAO F, LIU A, HU T L, et al. editors. Digital twin driven smart design. Elsevier: Academic Press, 2020: 265-287. |
| 82 | 白仲航, 孙意为, 许彤, 等.基于设计任务的概念设计中产品数字孪生模型的构建[J]. 工程设计学报, 2020, 27(6): 681-689. |
| BAI Z H, SUN Y W, Xu T, et al. Construction of product digital twin model based on design task in conceptual design[J]. Chinese Journal of Engineering Design, 2020, 27(6): 681-689 (in Chinese). | |
| 83 | 王昊琪, 李浩, 文笑雨, 等. 基于数字孪生的产品设计过程和工作量预测方法[J]. 计算机集成制造系统, 2022, 28(1): 17-30. |
| WANG H Q, Li H, WEN X Y, et al. Digital twin-based product design process and design effort prediction method[J]. Computer Integrated Manufacturing Systems, 2022, 28(1): 17-30 (in Chinese). | |
| 84 | 李浩, 陶飞, 王昊琪, 等. 基于数字孪生的复杂产品设计制造一体化开发框架与关键技术[J]. 计算机集成制造系统, 2019, 25(6): 1320-1336. |
| LI H, TAO F, WANG H Q, et al. Integration framework and key technologies of complex product design-manufacturing based on digital twin[J]. Computer Integrated Manufacturing Systems, 2019, 25(6): 1320-1336 (in Chinese). | |
| 85 | PAN L D, GUO X K, LUAN Y, et al. Design and realization of cutting simulation function of digital twin system of CNC machine tool[J]. Procedia Computer Science, 2021, 183: 261-266. |
| 86 | ANBALAGAN A, SHIVAKRISHNA B, SRIKANTH K S, A digital twin study for immediate design/redesign of impellers and blades : Part 1: CAD modelling and tool path simulation[J] Materials Today: Proceedings, 2021, 46(17): 8209-8217. |
| 87 | SHEN W D, HU T L, YIN Y S, et al. Chapter 11 - Digital twin based virtual commissioning for computerized numerical control machine tools[M]. TAO F, LIU A, HU T L, et al. editors. Digital twin driven smart design. Elsevier: Academic Press, 2020: 289-307. |
| 88 | WANG J, NIU X, GAO R X, et al. Digital twin-driven virtual commissioning of machine tool[J]. Robotics and Computer-Integrated Manufacturing, 2023, 81: 102499. |
| 89 | HOWARD D, The digital twin: virtual validation in electronics development and design[C]∥2019 Pan Pacific Microelectronics Symposium (Pan Pacific). 2019, 1-9. |
| 90 | 王春晓. 基于数字孪生的数控机床多领域建模与虚拟调试关键技术研究[D]. 济南: 山东大学, 2018. |
| WANG C X. Multi-domain modeling and virtual debugging of CNC machine tool based on digital twin[D]. Ji’nan: Shandong University, 2018 (in Chinese). | |
| 91 | 邓子毅. 面向发动机数字孪生工效虚拟人应用研究[D]. 天津: 中国民航大学, 2021. |
| DENG Z Y. Research on the application of engine digital twin ergonomic virtual human[D]. Tianjin: Civil Aviation University of China, 2021 (in Chinese). | |
| 92 | 刘然, 刘虎沉. 基于数字孪生的产品制造过程质量管理研究[J]. 现代制造工程, 2022, 502(7): 50-56. |
| LIU R, LIU H C. Research on quality management of product manufacturing process based on digital twin[J]. Modern Manufacturing Engineering 2022, 502(7): 50-56 (in Chinese). | |
| 93 | 马嵩华, 胡凯鑫, 胡天亮. 支持快速设计与性能跟踪的夹具数字孪生模型[J]. 计算机集成制造系统, 2022, 28(9): 2718-2725. |
| MA S H, HU K X, HU T L. Digital twins of fixtures supporting rapid design and performance tracking[J]. Computer Integrated Manufacturing Systems, 2022, 28(9): 2718-2725 (in Chinese). | |
| 94 | 孟博洋, 李茂月, 刘献礼, 等. 机床智能控制系统体系架构及关键技术研究进展[J]. 机械工程学报, 2021, 57(9): 147-166. |
| MENG B Y, LI M Y, LIU X L, et al. Research progress on the architecture and key technologies of machine tool intelligent control system[J]. Journal of Mechanical Engineering, 2021, 57(9): 147-166 (in Chinese). | |
| 95 | LIU J S, DONG Y, BI X X, et al. The Research of ontology-based digital twin machine tool modeling[C]∥2020 IEEE 6th International Conference on Computer and Communications (ICCC). 2020: 2130-2134. |
| 96 | 黄华, 李嘉然, 李典伦. 基于数字孪生的数控机床虚实交互监控系统设计[J]. 兰州理工大学学报, 2023, 49(1): 36-43. |
| HUANG H, LI J R, LI D L. Design of virtual real interactive monitoring system for CNC machine tools based on digital twins[J]. Journal of Lanzhou University of Technology, 2023, 49(1): 36-43 (in Chinese). | |
| 97 | 王宇顺. 基于数字孪生的设备运行状态远程监测技术研究[D]. 武汉: 华中科技大学, 2020. |
| WANG Y S. Remote monitoring technology of equipment operating status based on digital twin[D]. Wuhan: Huazhong University of Science and Technology, 2020 (in Chinese). | |
| 98 | 肖通, 江海凡, 丁国富, 等. 五轴磨床数字孪生建模与监控研究[J]. 系统仿真学报, 2021, 33(12): 2880-2890. |
| XIAO T, JIANG H F., DING G F, et al. Research on digital twin-based modeling and monitoring of five-axis grinder[J]. Journal of System Simulation, 2021, 33(12): 2880-2890 (in Chinese). | |
| 99 | 谭飏, 张宇, 刘丽冰, 等. 面向动力学特性监测的主轴系统数字孪生体[J]. 中国机械工程, 2020, 31(18): 2231-2238, 2246. |
| TAN Y, ZHANG Y, LIU L B, et al. Spindle system digital twin for dynamics characteristic monitoring [J]. China Mechanical Engineering, 2020, 31(18): 2231-2238, 2246 (in Chinese). | |
| 100 | LV J H, LI X Y, SUN Y C, et al. A bio-inspired LIDA cognitive-based Digital Twin architecture for unmanned maintenance of machine tools[J]. Robotics and Computer-Integrated Manufacturing, 2023, 80: 102489. |
| 101 | YANG X, RAN Y, ZHANG G B, et al. A digital twin-driven hybrid approach for the prediction of performance degradation in transmission unit of CNC machine tool[J] Robotics and Computer-Integrated Manufacturing, 2022, 73: 102230. |
| 102 | LIU K, SONG L, HAN W, et al. Time-varying error prediction and compensation for movement axis of CNC machine tool based on digital twin[J]. IEEE Transactions on Industrial Informatics, 2022, 18(1): 109-118. |
| 103 | 陈艺文. 基于数字孪生表面模型的滚磨加工精细化仿真方法研究[D]. 太原: 太原理工大学, 2022. |
| CHEN Y W. Research on precision simulation method of barrel finishing based on digital twin surface model[D]. Taiyuan: Taiyuan University of Technology, 2022 (in Chinese). | |
| 104 | GHOSH A, ULLAH A, KUBO A. Hidden Markov model-based digital twin construction for futuristic manufacturing systems[J]. AI EDAM-Artificial Intelligence for Engineering Design Analysis and Manufacturing, 2019, 33(3): 317-331. |
| 105 | ZHU Z X, XI X L, XU X, et al. Digital twin-driven machining process for thin-walled part manufacturing[J]. Journal of Manufacturing Systems, 2021, 59: 453-466. |
| 106 | 邹琦, 侯志霞, 王明阳. 机加零件的数字孪生模型构建方法[J]. 航空制造技术, 2020, 63(3): 67-75. |
| ZOU Q, HOU Z X, WANG M Y. Modeling method of digital twin models for machined parts[J] Aerospace Manufacturing Technology, 2020, 63(3): 67-75 (in Chinese). | |
| 107 | 岳彩旭, 张俊涛, 刘献礼, 等. 薄壁件铣削过程加工变形研究进展[J]. 航空学报, 2022,43(4): 525164. |
| YUE C X, ZHANG J T, Liu X L, et al. Research progress on machining deformation of thin-walled parts in milling process[J]. Acta Aeronautica et Astronautica Sinica, 2022, 43(4): 525164 (in Chinese). | |
| 108 | 成彬, 樊琛. 数字节点链驱动的孪生工序动态模型构建[J]. 兵器装备工程学报, 2023, 44(2): 69-76. |
| CHENG B, FAN C. Construction of a twin processes dynamic model driven by digital node chains[J]. Journal of Ordnance Equipment Engineering, 2023, 44(2): 69-76 (in Chinese). | |
| 109 | 朱宇, 李海宁, 曹志涛, 等. 数字孪生在航空发动机制造工艺中的应用探索[J]. 航空动力, 2019(4): 56-60. |
| ZHU Y, LI H N, CAO Z T, et al. The Application of digital twin in manufacturing process of aero engine[J]. Aerospace Power, 2019(4): 56-60 (in Chinese). | |
| 110 | 杨康. 基于数字孪生的叶片动应变反演[D]. 北京: 北京化工大学, 2021. |
| YANG K, Dynamic strain inversion of blade based on digital twin[D]. Beijing: Beijing University of Chemical Technology, 2021 (in Chinese). | |
| 111 | QIAO Q Z, WANG J J, YE L K, et al. Digital twin for machining tool condition prediction[J]. Procedia CIRP, 2019, 81: 1388-1393. |
| 112 | ZHANG H, QI Q L, JI W, et al. An update method for digital twin multi-dimension models[J]. Robotics and Computer-Integrated Manufacturing, 2023, 80: 102481. |
| 113 | 王军, 周婷婷, 衣明东. 金属切削刀具磨损监测技术研究进展[J]. 工具技术, 2021, 55(1): 3-10. |
| WANG J, ZHOU T T, YI M D. Review on research status of wear monitoring technology for metal cutting tool[J]. Tool Technology, 2021, 55(1): 3-10 (in Chinese). | |
| 114 | 王军. 基于数字孪生的刀具磨损监测和预测方法研究[D]. 济南: 齐鲁工业大学, 2021. |
| WANG J. Research on the monitoring and prediction method of cutting tool wear based on digital twin[D]. Ji’nan: Qilu University of Technology, 2021 (in Chinese). | |
| 115 | 李恒帅. 基于数字孪生技术的刀具磨损图像检测[D]. 哈尔滨: 哈尔滨理工大学, 2021. |
| LI H S. Tool wear image detection based on digital twin technology[D]. Harbin: Harbin University of Science and Technology, 2021 (in Chinese). | |
| 116 | 宋清华, 彭业振, 王润琼, 等. 数字孪生驱动的薄壁件铣削刀具磨损状态识别方法[J]. 航空制造技术, 2023, 66(3): 46-52, 60. |
| SONG Q H, PENG Y Z, WANG R Q, et al. Tool wear state identification method of thin-walled parts milling process driven by digital twin[J]. Aerospace Manufacturing Technology, 2023, 66 (3): 46-52, 60 (in Chinese). | |
| 117 | 张春霖, 周婷婷, 胡天亮, 等. 刀具切削变工况数字孪生模型构建方法研究[J]. 计算机集成制造系统, 2023, 29(6): 1852-1866. |
| ZHANG C L, ZHOU T T, HU T L, et al. Construction method of digital twin model for cutting tools under variable working conditions[J]. Computer Integrated Manufacturing Systems, 2023, 29(6): 1852-1866. | |
| 118 | 谢楠, 寇锐, 刘雪梅. 基于云计算的刀具状态监测数字孪生系统研究[J]. 机械制造, 2021, 59(3): 78-82, 92. |
| XIE N, KOU R, LIU X M. Research on digital twin system monitoring of tool condition based on cloud computing[J]. Machinery, 2021, 59(3): 78-82, 92 (in Chinese). | |
| 119 | 李亚. 数控机床刀具健康状态评估及预测技术研究[D]. 上海: 上海交通大学, 2020. |
| LI Y. Research on health status evaluation and prediction of CNC tool[D] Shanghai: Shanghai Jiao Tong University, 2020 (in Chinese). | |
| 120 | 孙鑫. 基于数字孪生的数控铣削刀具磨损在线预测及节能工艺优化方法[D]. 重庆: 重庆大学, 2021. |
| SUN X. On-line prediction of tool wear in CNC milling optimization of energy-saving technology based on digital twin[D] Chongqing: Chongqing University, 2021 (in Chinese). | |
| 121 | XIE Y, LIAN K L, LIU Q, et al. Digital twin for cutting tool: Modeling, application and service strategy[J]. Journal of Manufacturing Systems, 2021, 58: 305-312. |
| 122 | 赵飞, 侯星宇, 王骏, 等. 基于数字孪生的新型四工位刀架设计[J]. 实验技术与管理, 2020, 37(10): 144-150. |
| ZHAO F, HOU X Y, WANG J, Design of new four-position tool holder based on digital twin[J]. Experimental Technology and Management, 2020, 37(10): 144-150 (in Chinese). | |
| 123 | WANG G, CAO Y S, ZHANG Y F. Digital twin-driven clamping force control for thin-walled parts[J]. Advanced Engineering Informatics, 2022, 51: 101468. |
| 124 | WECKX S, ROBYNS S, BAAKE J, et al. A cloud-based digital twin for monitoring of an adaptive clamping mechanism used for high performance composite machining[J]. Procedia Computer Science, 2022, 200: 227-236. |
| 125 | 刘明浩, 岳彩旭, 夏伟, 等. 基于数字孪生的铣刀状态实时监控[J]. 计算机集成制造系统: 2023, 29(6): 2118-2129. |
| LIU M H, YUE C X, XIA W, et al. Real-time monitoring of milling tool state based on digital twin[J]. Computer Integrated Manufacturing Systems, 2023, 29(6): 2118-2129 (in Chinese). | |
| 126 | 崔馨予. 数控铣削数字孪生模型研究及面向能效的加工参数优化[D]. 哈尔滨: 哈尔滨工业大学, 2021. |
| CUI X Y. Research on digital twin model for NC milling and optimization of machining parameters for energy efficiency[D]. Harbin: Harbin Institute of Technology, 2021 (in Chinese). | |
| 127 | 方喜峰, 张杰, 程德俊, 等. 数字孪生驱动的船用柴油机关键件加工质量管控方法[J]. 机械设计与制造, 2023, (3): 46-52. |
| FANG X F, ZHANG J, CHENG D J, et al. Manufacturing quality control method of key parts of marine diesel driven by digital twin[J]. Machinery Design and Manufacture, 2023, (3): 46-52 (in Chinese). | |
| 128 | 张蕾. 基于数字孪生的设备预测性维护模式研究[J]. 电子工业专用设备, 2021, 50(3): 12-15. |
| ZHANG L. Research on predictive maintenance mode of equipment based on digital twin[J]. Equipment for Electronic Products, 2021, 50(3): 12-15 (in Chinese). | |
| 129 | CLASSENS K, WHEEMELS M, OOMEN T. Digital twins in mechatronics: from model-based control to predictive maintenance[C]∥2021 IEEE 1st International Conference on Digital Twins and Parallel Intelligence (DTPI). 2021: 336-339. |
| 130 | YU J S, TANG D Y. Chapter 8 - Digital twin-driven prognostics and health management[M]. TAO F, QI Q L, NEE A Y C, editors. Digital twin driven service. Elsevier: Academic Press, 2022: 205-250. |
| 131 | LUO W C, HU T L, YE Y X, et al. A hybrid predictive maintenance approach for CNC machine tool driven by digital twin[J]. Robotics and Computer-Integrated Manufacturing, 2020, 65: 101974. |
| 132 | 骆伟超. 基于Digital Twin的数控机床预测性维护关键技术研究[D]. 济南: 山东大学, 2020. |
| LUO W C. Research on key technologies of machine tool predictive maintenance based on digital twin[D]. Ji’nan: Shandong University, 2020 (in Chinese). | |
| 133 | 王成城, 王金江, 黄祖广, 等. 智能制造预测性维护标准体系研究与应用[J]. 制造技术与机床, 2023, 728(2): 73-82. |
| WANG C C, WANG J J, HUANG Z G, et al. Research and application of intelligent manufacturing predictive maintenance standard system[J]. Manufacturing Technology and Machine Tool, 2023, 728(2): 73-82 (in Chinese). | |
| 134 | 李晓, 陈雨晨, 阮渊鹏, 等. 基于DT的售后设备预测性维护协同模式研究[J]. 工业工程与管理, 2023, 28(1): 67-80. |
| LI X, CHEN Y C, RUAN Y P, et al. Research on collaborative model of predictive maintenance for after-sales equipment based on DT[J]. Industrial Engineering and Management, 2023, 28(1): 67-80 (in Chinese). | |
| 135 | 陆剑峰, 徐煜昊, 夏路遥, 等. 数字孪生支持下的设备故障预测与健康管理方法综述[J]. 自动化仪表, 2022, 43(6): 1-7, 12. |
| LU J F, XU Y H, XIA L Y, et al. Review of digital twin-enabled device prognostics and health management approaches[J]. Process Automation Instrumentation, 2022, 43(6): 1-7, 12 (in Chinese). | |
| 136 | 柳宇翀. 基于数字孪生技术的液压系统故障诊断与预测方法[D]. 大连: 大连理工大学, 2022. |
| LIU Y C. A Hydraulic system fault diagnosis and prediction method based on digital twin technology[D]. Dalian: Dalian University of Technology, 2022 (in Chinese). | |
| 137 | LIU J F, ZHOU H G, LIU X J . et al ., Dynamic evaluation method of machining process planning based on digital twin[J]. IEEE Access, 2019, 7: 19312-19323. |
| 138 | 赵鹏. 基于数字孪生的加工工艺评价方法研究[D]. 镇江: 江苏科技大学, 2021. |
| ZHAO P. Research on evaluation method of machining process based on digital twin[D]. Zhenjiang: Jiangsu University of Science and Technology, 2021 (in Chinese). | |
| 139 | 康献民, 陈尧, 王建生, 等. 机械装备的数字孪生结构参数分析与评价方法研究[J]. 机床与液压, 2022, 50(19): 14-19. |
| KANG X M, CHEN Y, WANG J S . et al. Research on digital twin parameter analysis and evaluation method of manipulator[J]. Machine Tool and Hydraulics, 2022, 50(19): 14-19 (in Chinese). | |
| 140 | PEREVERZEW P P, AKINTSEVA A V, ALSIGAR M K, et al. Designing optimal automatic cycles of round grinding based on the synthesis of digital twin technologies and dynamic programming method[J]. Mechanical Sciences, 2019, 10(1): 331-341. |
| 141 | SUN H B, YAO Y. Chapter 7-Digital twin-driven cutting tool service[M]. TAO F, QI Q L, NEE A Y C, editors. Digital twin driven service. Elsevier: Academic Press, 2022: 173-203. |
| 142 | VISHNU V S, VARGHESE K G, GURUMOORTHY B. A data-driven digital twin of CNC machining processes for predicting surface roughness[J]. Procedia CIRP, 2021, 104: 1065-1070. |
| 143 | 王岭. 基于数字孪生的航空发动机低压涡轮单元体对接技术研究[J]. 计算机测量与控制, 2018, 26(10): 286-290, 303. |
| WANG L. Research on the docking technology of final installation for aeroengine low pressure turbine unit based on digital twin[J]. Computer Measurement & Control, 2018, 26(10): 286-290, 303 (in Chinese). | |
| 144 | 许敏俊, 刘世民, 沈慧, 等. 数字孪生驱动下的弱刚性钻削毛刺控制[J]. 计算机集成制造系统, 2023, 29(4): 1115-1126. |
| XU M J, LIU S M, SHEN H, et al. Burr control of weak rigid drilling process driven by digital twin[J]. Computer Integrated Manufacturing Systems, 2023, 29(4): 1115-1126 (in Chinese). | |
| 145 | 周程辉. 基于数字孪生的渐进弯曲成形系统的研究[D]. 广州: 华南理工大学, 2021. |
| ZHOU P C. Research on incremental bending forming system based on digital twin[D] Guangzhou: South China University of Technology, 2021 (in Chinese). | |
| 146 | “碳达峰与碳中和关键技术”专辑[J]. 中南大学学报(自然科学版), 2022, 53(12): 4583. |
| “Carbon Peak and carbon neutrality key technology” album[J]. Journal of Central South University (Natural Science Edition), 2022, 53(12): 4583 (in Chinese). | |
| 147 | 向峰, 黄圆圆, 张智, 等. 基于数字孪生的产品生命周期绿色制造新模式[J]. 计算机集成制造系统, 2019, 25(6): 1505-1514. |
| XIANG F, HUANG Y, ZHANG Z, et al. New paradigm of green manufacturing for product life cycle based on digital twin[J]. Computer Integrated Manufacturing Systems, 2019, 25(6): 1505-1514 (in Chinese). | |
| 148 | XIANG F, ZHANG Z, ZUO Y, et al. Digital twin driven green material optimal-selection towards sustainable manufacturing[J]. Procedia CIRP, 2019, 81: 1290-1294. |
| 149 | LI L H, MAO C L, SUN H X, et al. Digital twin driven green performance evaluation methodology of intelligent manufacturing: hybrid model based on Fuzzy rough-sets AHP, multistage weight synthesis, and PROMETHEE II[J]. Complexity in Economics and Business, 2020, 2020: 1-24. |
| 150 | KERIN M, HARTONO N. PHAM D T. Optimising remanufacturing decision-making using the bees algorithm in product digital twins[J]. Scientific Reports, 2023, 13: 701. |
| 151 | 陶飞, 张辰源, 张贺, 等. 未来装备探索: 数字孪生装备[J]. 计算机集成制造系统, 2022, 28(1): 1-16. |
| TAO F, ZHANG C Y, ZHANG H, et al. Future equipment exploration: digital twin equipment[J]. Computer Integrated Manufacturing Systems, 2022, 28(1): 1-16 (in Chinese). | |
| 152 | 黄圆圆. 基于数字孪生的制造服务能耗评估方法研究[D]. 武汉: 武汉科技大学, 2020. |
| HUANG Y Y. Research on manufacturing services energy consumption evaluation method based on digital twin[D]. Wuhan: Wuhan University of Science and Technology, 2020 (in Chinese). | |
| 153 | 刘魁, 王潘, 刘婷. 数字孪生在航空发动机运行维护中的应用[J]. 航空动力, 2019, 9(4): 70-74. |
| LIU K, WANG P, LIU T. The application of digital twin in aero engine operation and maintenance[J]. Aerospace Power, 2019, 9(4): 70-74 (in Chinese). | |
| 154 | 高士根, 周敏, 郑伟, 等. 基于数字孪生的高端装备智能运维研究现状与展望[J]. 计算机集成制造系统, 2022, 28(7): 1953-1965. |
| GAO S G, ZHOU M, ZHENG W, et al. Intelligent operation and maintenance for advanced equipment based on digital twin: Challenges and future [J]. Computer Integrated Manufacturing Systems, 2022, 28(7): 1953-1965 (in Chinese). | |
| 155 | 吕伟. 基于数字孪生的液压运维系统[J]. 机械制造, 2022, 60(6): 40-44. |
| LV W. Hydraulic operation and maintenance system based on digital twin[J]. Machinery, 2022, 60(6): 40-44 (in Chinese). | |
| 156 | 陈晓红, 刘飞香, 艾彦迪, 等. 面向智能制造的工业数字孪生关键技术特性[J]. 科技导报, 2022, 40(11): 45-54. |
| CHEN X H, LIU F X, AI Y D, et al. Key characteristics analysis of industrial digital twins for smart manufacturing[J]. Science Technology Review, 2022, 40(11): 45-54 (in Chinese). | |
| 157 | 黄彬彬, 张映锋, 黄博, 等. 数字孪生驱动的复杂产品智能运维服务体系与核心技术[J]. 机械工程学报, 2022, 58(12): 250-260. |
| HUANG B B, ZHANG Y F, HUANG B, et al. Architecture and key technologies of digital-twin-driven intelligent operation maintenance services for complex product[J]. Journal of Mechanical Engineering, 2022, 58(12), 250-260 (in Chinese). | |
| 158 | 曹明, 王鹏, 左洪福, 等. 民用航空发动机故障诊断与健康管理现状、挑战与机遇Ⅱ: 地面综合诊断、寿命管理和智能维护维修决策[J]. 航空学报, 2022, 43(9): 625574. |
| CAO M, WANG P, ZUO H F, et al. Current status, challenges and opportunities of civil aero-engine diagnostics & health management Ⅱ: Comprehensive off-board diagnosis, life management and intelligent condition based MRO[J]. Acta Aeronautica et Astronautica Sinica, 2022, 43(9): 625574 (in Chinese). | |
| 159 | QI Q L, TAO F, HU T L, et al. Enabling technologies and tools for digital twin[J]. Journal of Manufacturing Systems, 2021, 58: 3-21. |
| 160 | 隋少春, 许艾明, 黎小华, 等. 面向航空智能制造的DT与AI融合应用[J]. 航空学报, 2020, 41(7): 624173. |
| SUI S C, XU A M, LI X H, et al. Fusion application of DT and AI for aviation intelligent manufacturing[J]. Acta Aeronautica et Astronautica Sinica, 2020, 41(7): 623173 (in Chinese). | |
| 161 | TAO F, ZHANG M, NEE A Y C. Chapter 8 - Digital twin and cloud, fog, edge computing[M]. TAO F, ZHANG M, NEE A Y C, editors. Digital twin driven smart manufacturing. Elsevier: Academic Press, 2019: 171-181. |
| 162 | 孟麒, 胡天亮, 马嵩华. 云-雾-边缘协同的数字孪生制造系统仿真过程动态扰动响应方法[J]. 计算机集成制造系统, 2023, 29(6): 1996-2005. |
| MENG Q, HU T L, MA S H. Cloud-fog-edge collaboration digital twin manufacturing system simulation process and dynamic disturbance response method[J]. Computer Integrated manufacturing systems, 2023, 29(6): 1996-2005 (in Chinese). | |
| 163 | QI Q L, TAO F. Digital twin and big data towards smart manufacturing and Industry 4.0: 360 degree comparison[J]. IEEE Access, 2018, 6: 3585-3593. |
| 164 | ZHANG C, ZHOU G H, LI J J, et al. A multi-access edge computing enabled framework for the construction of a knowledge-sharing intelligent machine tool swarm in Industry 4.0[J]. Journal of Manufacturing Systems, 2023, 66: 56-70. |
| 165 | LIU Z F, CHEN W, ZHANG C X, et al. Intelligent scheduling of a feature-process-machine tool supernetwork based on digital twin workshop[J]. Journal of Manufacturing Systems, 2021, 58: 157-167. |
| 166 | MO F, REHMAN H U, MONETTI F M, et al. A framework for manufacturing system reconfiguration and optimization utilizing digital twins and modular artificial intelligence[J]. Robotics and Computer-Integrated Manufacturing, 2023, 82: 102524. |
| 167 | REN Z J, WAN J F. Strengthening digital twin applications based on machine learning for complex equipment[C]∥2021 Design, Automation & Test in Europe Conference & Exhibition (DATE). 2021: 609-614. |
| 168 | TAO F, ZHANG M, NEE A Y C. Chapter 11 - Digital twin and virtual reality and augmented reality/mixed reality[M]. TAO F, ZHANG M, NEE A Y C, editors. Digital twin driven smart manufacturing. Elsevier: Academic Press, 2019: 219-241. |
| 169 | ZHU Z X, LIU C, XU X. Visualisation of the digital twin data in manufacturing by using augmented reality[J]. Procedia CIRP, 2019, 81: 898-903. |
| 170 | TAO F, ZHANG M, NEE A Y C. Chapter 12 - Digital twin, cyber-physical system, and internet of things[M]. TAO F, ZHANG M, NEE A Y C, editors. Digital twin driven smart manufacturing. Elsevier: Academic Press; 2019: 243-256. |
| 171 | MERTES J, GLATT M, SCHELLENBERGER C, et al. Development of a 5G-enabled digital twin of a machine tool[J]. Procedia CIRP, 2022, 107: 173-178. |
| 172 | LIU S M, LU Y Q, LI J, et al. A blockchain-based interactive approach between digital twin-based manufacturing systems[J]. Computers & Industrial Engineering, 2023, 175: 108827. |
| 173 | 张超, 周光辉, 李晶晶, 等. 新一代信息技术赋能的数字孪生制造单元系统关键技术及应用研究[J]. 机械工程学报, 2022, 58(16): 329-343. |
| ZAHNG C, ZHOU G H, LI J J, et al. Research on key technologies and application of new IT-driven digital twin manufacturing cell system[J]. Journal of Mechanical Engineering, 2022, 58(16): 329-343 (in Chinese). | |
| 174 | FULLER A, FAN Z, DAY C, et al. Digital twin: enabling technologies, challenges and open research[J]. IEEE Access, 2020, 8: 108952-108971. |
| 175 | MIHAI S, YAQOOB M, HUNG D V, et al. Digital twins: a survey on enabling technologies, challenges, trends and future prospects[J]. IEEE Communications Surveys & Tutorials, 2022, 24(4): 2255-2291. |
| 176 | MOHSEN A, BILGE G C, twin Digital : benefits, use cases, challenges, and opportunities[J]. Decision Analytics Journal, 2023, 6: 100165. |
| 177 | WU J, YANG Y, CENG X, et al. The development of digital twin technology review[C]∥2020 Chinese Automation Congress (CAC). 2020: 4901-4906. |
| [1] | Yiwei HUANG, Yibin GENG, Tianhe GAO, Xuanwei HU, Yuan WANG, Hongyan MA, Kuo TIAN. Digital twin driven high precision reconstruction method for full-field deformation of structure [J]. Acta Aeronautica et Astronautica Sinica, 2025, 46(19): 530967-530967. |
| [2] | Dingqiang DAI, Xuan ZHOU, Leiting DONG, Xiasheng SUN. Research progress and prospects of digital engineering and digital twin in field of aeronautical fatigue and structural integrity [J]. Acta Aeronautica et Astronautica Sinica, 2025, 46(19): 531022-531022. |
| [3] | Shangyu LI, Hang FENG, Junquan CHEN, Bin CHEN, Dan MEI. A design architecture and conceptual modeling approach for digital twins [J]. Acta Aeronautica et Astronautica Sinica, 2025, 46(19): 531118-531118. |
| [4] | Junqi LEI, Yuehua CHENG, Bin JIANG, Cheng XU, Guili XU, Tianyu SUN. Digital-twin’s modelling and dynamic adjustment mechanism of rudder-loop-system under fault conditions [J]. Acta Aeronautica et Astronautica Sinica, 2025, 46(19): 531273-531273. |
| [5] | Liang CHEN, Lei HUANG, Yuxuan GU, Cong GUO, Kexin LIN, Yu GUAN, Jian SONG. Twinning technology of key part load based on flight parameters [J]. Acta Aeronautica et Astronautica Sinica, 2025, 46(19): 531292-531292. |
| [6] | Yuxuan GU, Cong GUO, Lei HUANG, Yifei DONG, Hongda DONG, Zhilun DENG. Refined management of fleet life driven by digital twins [J]. Acta Aeronautica et Astronautica Sinica, 2025, 46(19): 531290-531290. |
| [7] | Yinxuan ZHANG, Qi ZHANG, Zhenyong XU, Linshu MENG. Predicting method of aircraft mechanical response based on residual neural networks [J]. Acta Aeronautica et Astronautica Sinica, 2025, 46(19): 531295-531295. |
| [8] | Ruoyao XIAO, Lianyu ZHENG, Jian ZHOU, Siru ZHAO, Jieru ZHANG, Yuwu CHEN. Online optimization method for positioning accuracy in cylindrical components aligning based on digital twins [J]. Acta Aeronautica et Astronautica Sinica, 2025, 46(19): 531978-531978. |
| [9] | Jialiang HU, Jiangpeng WU, Sixu HUO, Yidi GAO, Hua ZHENG. Modal parameter estimation based on reconstruction of digital twin sweep data in flutter flight test [J]. Acta Aeronautica et Astronautica Sinica, 2025, 46(19): 531602-531602. |
| [10] | Pengfei WANG, Lifang ZENG, Xueming SHAO, Jun LI. Multi-source data fusion modeling method for aerodynamic load of aircraft wing based on pre-training and fine-tuning [J]. Acta Aeronautica et Astronautica Sinica, 2025, 46(19): 532297-532297. |
| [11] | Yifei WANG, Geyong CAO, Yang CAO, Xiaojun WANG. Uncertainty technologies in aircraft digital strength twins [J]. Acta Aeronautica et Astronautica Sinica, 2025, 46(19): 532408-532408. |
| [12] | Liang CHEN, Fanxing MENG, Chengbo WANG, Yinxuan ZHANG, Linshu MENG. Development and application of digital twins technology in aircraft strength design [J]. Acta Aeronautica et Astronautica Sinica, 2025, 46(19): 532252-532252. |
| [13] | Ran ZHUO, Chuliang YAN. A key component in digital twin of aircraft structures: Multi-dimensional flight parameter measurements [J]. Acta Aeronautica et Astronautica Sinica, 2025, 46(19): 532375-532375. |
| [14] | Lin LIN, Shiwei SUO, Dan LIU, Yinxuan ZHANG, Lingyu YUE, Sihao ZHANG, Yikun LIU, Song FU. A deep feature fusion network based on multi-scale kernel construction for filling wing stress field data [J]. Acta Aeronautica et Astronautica Sinica, 2025, 46(19): 532343-532343. |
| [15] | Kuo TIAN, Zhiyong SUN, Zengcong LI. High-precision digital twin method for structural static test monitoring [J]. Acta Aeronautica et Astronautica Sinica, 2024, 45(7): 429134-429134. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||
Address: No.238, Baiyan Buiding, Beisihuan Zhonglu Road, Haidian District, Beijing, China
Postal code : 100083
E-mail:hkxb@buaa.edu.cn
Total visits: 6658907 Today visits: 1341All copyright © editorial office of Chinese Journal of Aeronautics
All copyright © editorial office of Chinese Journal of Aeronautics
Total visits: 6658907 Today visits: 1341

