1 |
檀江涛, 蒋高明, 高哲, 等. 抗低速冲击纺织复合材料头盔壳体研究进展[J]. 纺织学报, 2021, 42(8): 185-193.
|
|
TAN J T, JIANG G M, GAO Z, et al. Research progress of textile composite helmet shell against low-velocity impact[J]. Journal of Textile Research, 2021, 42(8): 185-193 (in Chinese).
|
2 |
张旭东, 赵伟超, 张娟. 中型无人机复合材料机翼梁的成型工艺[J]. 宇航材料工艺, 2022, 52(1): 94-97.
|
|
ZHANG X D, ZHAO W C, ZHANG J. Forming technology of composite wing beam for medium unmanned aerial vehicle[J]. Aerospace Materials & Technology, 2022, 52(1): 94-97 (in Chinese).
|
3 |
PATEL M, PARDHI B, CHOPARA S, et al. Lightweight composite materials for automotive—A review[J]. International Research Journal of Engineering and Technology, 2018, 5(11): 41-47.
|
4 |
BOUSSU F. The use of warp interlock fabric inside textile composite protection against ballistic impact[J]. Textile Research Journal, 2011, 81(4): 344-354.
|
5 |
孙洋, 黄建, 韩晨晨, 等. 二维与三维机织复合材料面内力学性能对比[J]. 航空学报, 2023, 44(18): 428267.
|
|
SUN Y, HUANG J, HAN C C, et al. The comparison of in-plane mechanical properties of 2D and 3D woven composites[J]. Acta Aeronautica et Astronautica Sinica, 2023,44(18): 428267 (in Chinese).
|
6 |
DAHALE M, NEALE G, LUPICINI R, et al. Effect of weave parameters on the mechanical properties of 3D woven glass composites[J]. Composite Structures, 2019, 223: 110947.
|
7 |
YING Z P, PAN X H, WU Z Y, et al. Effect of the micro-structure on the compressive failure behavior of three-dimensional orthogonal woven composites[J]. Composite Structures, 2022, 297: 115892.
|
8 |
张龙, 程俊, 邱荣凯, 等. 基于三维通用单胞方法的平纹编织复合材料多尺度损伤模拟方法[J]. 航空动力学报, 2020, 35(11): 2275-2283.
|
|
ZHANG L, CHENG J, QIU R K, et al. Multiscale damage simulation of plain weave composites based on 3D general method of cells[J]. Journal of Aerospace Power, 2020, 35(11): 2275-2283 (in Chinese).
|
9 |
王雅娜, 曾安民, 陈新文, 等. 2.5D机织石英纤维增强树脂复合材料不同方向力学性能测试与模量预测[J]. 复合材料学报, 2019, 36(6): 1364-1373.
|
|
WANG Y N, ZENG A M, CHEN X W, et al. Mechanical properties testing for 2.5D quartz fiber reinforced resin composites in different directions and module prediction[J]. Acta Materiae Compositae Sinica, 2019, 36(6): 1364-1373 (in Chinese).
|
10 |
赵巧莉, 侯玉亮, 刘泽仪, 等. 碳纤维平纹机织复合材料低速冲击及冲击后压缩性能多尺度分析[J]. 中国机械工程, 2021, 32(14): 1732-1742.
|
|
ZHAO Q L, HOU Y L, LIU Z Y, et al. Multi-scale analysis of LVI and CAI behaviors of plain woven carbon-fiber-reinforced composites[J]. China Mechanical Engineering, 2021, 32(14): 1732-1742 (in Chinese).
|
11 |
GAO Z Y, CHEN L. A review of multi-scale numerical modeling of three-dimensional woven fabric[J]. Composite Structures, 2021, 263: 113685.
|
12 |
王宏越, 王兵, 方国东, 等. 2.5D机织浅交弯联复合材料数字单元建模分析[J]. 航空学报, 2023,44(9):227478
|
|
WANG H Y, WANG B, FANG G D, et al. Digital element modelling and analysis of 2.5D woven shallow cross bending composites[J]. Acta Aeronautica et Astronautica Sinica, 2023,44(9):227478 (in Chinese).
|
13 |
LOMOV S V, PERIE G, IVANOV D S, et al. Modeling three-dimensional fabrics and three-dimensional reinforced composites: Challenges and solutions[J]. Textile Research Journal, 2011, 81(1): 28-41.
|
14 |
VERPOEST I, LOMOV S V. Virtual textile composites software WiseTex: Integration with micro-mechanical, permeability and structural analysis[J]. Composites Science and Technology, 2005, 65(15-16): 2563-2574.
|
15 |
LIN H, ZENG X S, SHERBURN M, et al. Automated geometric modelling of textile structures[J]. Textile Research Journal, 2012, 82(16): 1689-1702.
|
16 |
VANAERSCHOT A, COX B N, LOMOV S V, et al. Multi-scale modelling strategy for textile composites based on stochastic reinforcement geometry[J]. Computer Methods in Applied Mechanics and Engineering, 2016, 310: 906-934.
|
17 |
HUANG W, CAUSSE P, BRAILOVSKI V, et al. Reconstruction of mesostructural material twin models of engineering textiles based on micro-CT aided geometric modeling[J]. Composites Part A: Applied Science and Manufacturing, 2019, 124: 105481.
|
18 |
WIJAYA W, ALI M A, UMER R, et al. An automatic methodology to CT-scans of 2D woven textile fabrics to structured finite element and voxel meshes[J]. Composites Part A: Applied Science and Manufacturing, 2019, 125: 105561.
|
19 |
YING Z P, HU X D, CHENG X Y, et al. Numerical investigation on the effect of tow tension on the geometry of three-dimensional orthogonally woven fabric[J]. Textile Research Journal, 2019, 89(18): 3779-3791.
|
20 |
MAHADIK Y, HALLETT S R. Finite element modelling of tow geometry in 3D woven fabrics[J]. Composites Part A: Applied Science and Manufacturing, 2010, 41(9): 1192-1200.
|
21 |
WUCHER B, HALLSTRÖM S, DUMAS D, et al. Nonconformal mesh-based finite element strategy for 3D textile composites[J]. Journal of Composite Materials, 2017, 51(16): 2315-2330.
|
22 |
HA M H, CAUVIN L, RASSINEUX A. A methodology to mesh mesoscopic representative volume element of 3D interlock woven composites impregnated with resin[J]. Comptes Rendus Mécanique, 2016, 344(4-5): 267-283.
|
23 |
RASSINEUX A. Robust conformal adaptive meshing of complex textile composites unit cells[J]. Composite Structures, 2022, 279: 114740.
|
24 |
应志平. 三维正交机织物成形过程建模及其增强复合材料压缩性能研究[D]. 杭州: 浙江理工大学, 2018.
|
|
YING Z P. Modelling of 3D orthogonal woven fabric weaving process and investigation of compression performance of its reinforced composite[D].Hangzhou: Zhejiang Sci-Tech University, 2018 (in Chinese).
|
25 |
FANG G D, CHEN C H, MENG S H, et al. Mechanical analysis of three-dimensional braided composites by using realistic voxel-based model with local mesh refinement[J]. Journal of Composite Materials, 2019, 53(4): 475-487.
|
26 |
MATVEEV M Y, BROWN L P, LONG A C. Efficient meshing technique for textile composites unit cells of arbitrary complexity[J]. Composite Structures, 2020, 254: 112757.
|
27 |
MAZUMDER A, WANG Y Q, YEN C F. A structured method to generate conformal FE mesh for realistic textile composite micro-geometry[J]. Composite Structures, 2020, 239: 112032.
|
28 |
WANG Y Q, SUN X K. Digital-element simulation of textile processes[J]. Composites Science and Technology, 2001, 61(2): 311-319.
|
29 |
马莹, 何田田, 陈翔, 等. 基于数字单元法的三维正交织物 微观几何结构建模[J]. 纺织学报, 2020, 41(7): 59-66.
|
|
MA Y, HE T T, CHEN X, et al. Micro-geometry modeling of three-dimensional orthogonal woven fabrics based on digital element approach[J]. Journal of Textile Research, 2020, 41(7): 59-66 (in Chinese).
|
30 |
GASSER A, BOISSE P, HANKLAR S. Mechanical behaviour of dry fabric reinforcements. 3D simulations versus biaxial tests[J]. Computational Materials Science, 2000, 17(1): 7-20.
|
31 |
OLIVIER D, SYLVAIN P, MONIQUE T. Walking in a triangulation[J]. International Journal of Foundations of Computer Science, 2002, 13: 181-199.
|
32 |
EDELSBRUNNER H, KIRKPATRICK D, SEIDEL R. On the shape of a set of points in the plane[J]. IEEE Transactions on Information Theory, 1983, 29(4): 551-559.
|
33 |
GREEN S D, MATVEEV M Y, LONG A C, et al. Mechanical modelling of 3D woven composites considering realistic unit cell geometry[J]. Composite Structures, 2014, 118: 284-293.
|
34 |
ZENG Q L, SUN L J, GE J R, et al. Damage characterization and numerical simulation of shear experiment of plain woven glass-fiber reinforced composites based on 3D geometric reconstruction[J]. Composite Structures, 2020, 233: 111746.
|
35 |
LINDE P, DE BOER H. Modelling of inter-rivet buckling of hybrid composites[J]. Composite Structures, 2006, 73(2): 221-228.
|
36 |
QING H, MISHNAEVSKY L. 3D constitutive model of anisotropic damage for unidirectional ply based on physical failure mechanisms[J]. Computational Materials Science, 2010, 50(2): 479-486.
|
37 |
OMAIREY S L, DUNNING P D, SRIRAMULA S. Development of an ABAQUS plugin tool for periodic RVE homogenisation[J]. Engineering with Computers, 2019, 35(2): 567-577.
|