Acta Aeronautica et Astronautica Sinica ›› 2023, Vol. 44 ›› Issue (14): 628207-628207.doi: 10.7527/S1000-6893.2022.28207
• special column • Previous Articles Next Articles
Tao CHEN1, Xingping XU2, Hongda ZHANG2, Xingsi HAN1()
Received:
2022-11-01
Revised:
2022-11-22
Accepted:
2022-12-28
Online:
2023-07-25
Published:
2023-04-11
Contact:
Xingsi HAN
E-mail:xshan@nuaa.edu.cn
Supported by:
CLC Number:
Tao CHEN, Xingping XU, Hongda ZHANG, Xingsi HAN. Numerical simulation of combustion instability by SATES coupling with FGM combustion model[J]. Acta Aeronautica et Astronautica Sinica, 2023, 44(14): 628207-628207.
1 | BAUER H J. New low emission strategies and combustor designs for civil aeroengine applications[J]. Progress in Computational Fluid Dynamics, an International Journal, 2004, 4(3-5): 130-142. |
2 | POINSOT T. Prediction and control of combustion instabilities in real engines[J]. Proceedings of the Combustion Institute, 2017, 36(1): 1-28. |
3 | 程林.轴向旋流器振荡燃烧特性数值模拟研究[D]. 镇江:江苏科技大学, 2019. |
CHENG L. Numerical simulation study on oscillating combustion characteristics of axial cyclone[D]. Zhenjiang: Jiangsu University of Science and Technology, 2019 (in Chinese). | |
4 | HAN X S, LI J X, MORGANS A S. Prediction of combustion instability limit cycle oscillations by combining flame describing function simulations with a thermoacoustic network model[J]. Combustion and Flame, 2015, 162(10): 3632-3647. |
5 | HAN X S, MORGANS A S. Simulation of the flame describing function of a turbulent premixed flame using an open-source LES solver[J]. Combustion and Flame, 2015, 162(5): 1778-1792. |
6 | LAERA D, CAMPA G, CAMPOREALE S M. A finite element method for a weakly nonlinear dynamic analysis and bifurcation tracking of thermo-acoustic instability in longitudinal and annular combustors[J]. Applied Energy, 2017, 187: 216-227. |
7 | SHAHI M, KOK J B W, ROMAN CASADO J C, et al. Assessment of thermoacoustic instabilities in a partially premixed model combustor using URANS approach[J]. Applied Thermal Engineering, 2014, 71(1): 276-290. |
8 | SHAHI M, KOK J B W, ROMAN CASADO J C, et al. Transient heat transfer between a turbulent lean partially premixed flame in limit cycle oscillation and the walls of a can type combustor[J]. Applied Thermal Engineering, 2015, 81:128-139. |
9 | CHEN Z X, SWAMINATHAN N, STÖHR M, et al. Interaction between self-excited oscillations and fuel-air mixing in a dual swirl combustor[J]. Proceedings of the Combustion Institute, 2019, 37(2): 2325-2333. |
10 | FREDRICH D, JONES W P, MARQUIS A J. A combined oscillation cycle involving self-excited thermo-acoustic and hydrodynamic instability mechanisms[J]. Physics of Fluids, 2021, 33(8): 085122. |
11 | PANT T, JAIN U, WANG H F. Transported PDF modeling of compressible turbulent reactive flows by using the Eulerian Monte Carlo fields method[J]. Journal of Computational Physics, 2021, 425: 109899. |
12 | XIA Y, SHARKEY P, VERMA I,et al.Prediction of thermoacoustic instability and fluid-structure interactions for gas turbine combustor[J]. Journal Engineering Gas Turbines Power,2022,144(9):091005. |
13 | GHANI A, POINSOT T, GICQUEL L, et al. LES of longitudinal and transverse self-excited combustion instabilities in a bluff-body stabilized turbulent premixed flame[J]. Combustion and Flame, 2015, 162(11): 4075-4083. |
14 | 程豫洲. 燃烧不稳定机理及其影响因素的全可压缩数值模拟研究[D]. 杭州: 浙江大学, 2021. |
CHENG Y Z. Study on fully compressible numerical simulation of combustion instability mechanism and its influencing factors[D]. Hangzhou: Zhejiang University, 2021 (in Chinese). | |
15 | YANG Y, WANG G F, FANG Y Q, et al. Experimental study of the effect of outlet boundary on combustion instabilities in premixed swirling flames[J]. Physics of Fluids, 2021, 33(2): 027106. |
16 | ROMAN CASADO J C. Nonlinear behavior of the thermoacoustic instabilities in the limousine combustor[D]. Enschede: University of Twente,2013. |
17 | MA F H, PROSCIA W, IVANOV V, et al. Large eddy simulation of self-excited combustion dynamics in a bluff-body combustor[C]∥ 51st AIAA/SAE/ASEE Joint Propulsion Conference. Reston: AIAA, 2015. |
18 | MICHAEL B.Evaluation of impedance boundary conditions in ANSYS Fluent[D].Munich: Technical University of Munich, 2017. |
19 | COKLJAT D, JEMCOV A, MARUSZEWSKI J P.An implicit algorithm for finite volume-Finite element coupling[C]∥Sixth International Conference on Computational Method. 2015. |
20 | HAN X S, KRAJNOVIĆ S. An efficient very large eddy simulation model for simulation of turbulent flow[J]. International Journal for Numerical Methods in Fluids, 2013, 71(11): 1341-1360. |
21 | HAN X S, KRAJNOVIĆ S. Validation of a novel very large eddy simulation method for simulation of turbulent separated flow[J]. International Journal for Numerical Methods in Fluids, 2013, 73(5): 436-461. |
22 | HAN X S, KRAJNOVIĆ S. Very-large-eddy simulation based on k-ω model[J]. AIAA Journal, 2015, 53(4): 1103-1108. |
23 | POPE S B. Turbulent flows[M]. Cambridge: Cambridge University Press, 2000. |
24 | MENTER F R. Two-equation eddy-viscosity turbulence models for engineering applications[J]. AIAA Journal, 1994, 32(8): 1598-1605. |
25 | LECOCQ G, RICHARD S, COLIN O, et al. Hybrid presumed pdf and flame surface density approaches for Large-Eddy Simulation of premixed turbulent combustion. Part 1:Formalism and simulation of a quasi-steady burner[J]. Combustion and Flame, 2011, 158(6): 1201-1214. |
26 | LECOCQ G, RICHARD S, COLIN O, et al. Hybrid presumed pdf and flame surface density approaches for Large-Eddy Simulation of premixed turbulent combustion. Part 2:Early flame development after sparking[J]. Combustion and Flame, 2011, 158(6): 1215-1226. |
27 | BOGER M, VEYNANTE D, BOUGHANEM H, et al. Direct numerical simulation analysis of flame surface density concept for large eddy simulation of turbulent premixed combustion[J]. Symposium (International) on Combustion, 1998, 27(1): 917-925. |
28 | FUREBY C. A fractal flame-wrinkling large eddy simulation model for premixed turbulent combustion[J]. Proceedings of the Combustion Institute, 2005, 30(1): 593-601. |
29 | ZIMONT V L, LIPATNIKOV A N. A numerical model of premixed turbulent combustion of gases[J].Chemical Physics Reports,1995,14(7):993-1025. |
30 | MA T, STEIN O T, CHAKRABORTY N, et al. A posteriori testing of algebraic flame surface density models for LES[J]. Combustion Theory and Modelling, 2013, 17(3): 431-482. |
31 | ROCHETTE B, COLLIN-BASTIANI F, GICQUEL L, et al. Influence of chemical schemes, numerical method and dynamic turbulent combustion modeling on LES of premixed turbulent flames[J]. Combustion and Flame, 2018, 191: 417-430. |
32 | GARBY R, SELLE L, POINSOT T. Analysis of the impact of heat losses on an unstable model rocket-engine combustor using Large-Eddy Simulation[C]∥ 48th AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit. Reston: AIAA, 2012. |
33 | HERNÁNDEZ I, STAFFELBACH G, POINSOT T, et al. LES and acoustic analysis of thermo-acoustic instabilities in a partially premixed model combustor[J]. Comptes Rendus Mécanique, 2013, 341(1-2): 121-130. |
[1] | Qiyu ZHOU, Jiaqi ZHANG. Observation on ignition process in small rocket thruster fueled by gaseous oxygen and gaseous methane [J]. Acta Aeronautica et Astronautica Sinica, 2024, 45(8): 128876-128876. |
[2] | . Research progress in high thrust liquid oxygen methane rocket engine technology [J]. Acta Aeronautica et Astronautica Sinica, 0, (): 0-0. |
[3] | Weiguo ZHAO, Huanhuan QIANG, Xingguo LI. Effect of annular nozzle breadth on cavitation characteristics of high⁃speed inducer [J]. Acta Aeronautica et Astronautica Sinica, 2024, 45(4): 128730-128730. |
[4] | Ziguang LI, Peng CHENG, Qinglian LI, Xiao BAI, Pengjin CAO. Influence of backpressure on spray distribution characteristics of a gas-liquid pintle injector element [J]. Acta Aeronautica et Astronautica Sinica, 2024, 45(2): 128614-128614. |
[5] | . Influence of catalytic bed structure on the performance of HAN-based monopropellant engine [J]. Acta Aeronautica et Astronautica Sinica, 0, (): 0-0. |
[6] | Zehao CHEN, Hui CHEN, Yushan GAO, Hang ZHANG. Review and prospect of model-based fault diagnosis technology for liquid rocket engines [J]. Acta Aeronautica et Astronautica Sinica, 2023, 44(23): 629016-629016. |
[7] | Guoyuan ZHANG, Xukang LI, Weigang ZHAO, Yangyang ZHAO, Junqian WANG. Theoretical and experimental on two-phase flow mechanism of low-temperature high-speed hydrodynamic mechanical seal [J]. Acta Aeronautica et Astronautica Sinica, 2023, 44(23): 628229-628229. |
[8] | . Review of Research on High Frequency Combustion Instability in Liquid Rocket Engine [J]. Acta Aeronautica et Astronautica Sinica, 0, (): 0-0. |
[9] | . Experimental study for effects of back pressure on atomization character-istics of impinging jet injector [J]. Acta Aeronautica et Astronautica Sinica, 0, (): 0-0. |
[10] | Xiaopu ZHANG, Feng REN, Pengli XU, Zhimin LI, Caihong SU. Selection method of measuring parameters for rocket engine based on fault recognition [J]. Acta Aeronautica et Astronautica Sinica, 2023, 44(22): 128522-128522. |
[11] | . Experimental study on high pressure combustion for hypergolic propellant unlike doublet injectors [J]. Acta Aeronautica et Astronautica Sinica, 0, (): 0-0. |
[12] | . Research progress on structural strength of liquid rocket engine during engineering development phase [J]. Acta Aeronautica et Astronautica Sinica, 0, (): 0-0. |
[13] | . Ignition characteristics and exhaust experiment of 120N liquid rocket engine under simulated lunar high temperature [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 0, (): 0-0. |
[14] | Dahua DU, Bin LI. Key structural dynamic design technologies in liquid rocket engines: Review [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2023, 44(10): 27554-027554. |
[15] | Qixiang GAO, Dingwei ZHANG, Lijun YANG, Qingfei FU. Experiment on dynamic characteristics of swirl injector under back pressure [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2023, 44(7): 127130-127130. |
Viewed | ||||||||||||||||||||||||||||||||||||||||||||||||||
Full text 283
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Abstract 499
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Address: No.238, Baiyan Buiding, Beisihuan Zhonglu Road, Haidian District, Beijing, China
Postal code : 100083
E-mail:hkxb@buaa.edu.cn
Total visits: 6658907 Today visits: 1341All copyright © editorial office of Chinese Journal of Aeronautics
All copyright © editorial office of Chinese Journal of Aeronautics
Total visits: 6658907 Today visits: 1341