Acta Aeronautica et Astronautica Sinica ›› 2023, Vol. 44 ›› Issue (16): 127967-127967.doi: 10.7527/S1000-6893.2022.27967
• Fluid Mechanics and Flight Mechanics • Previous Articles Next Articles
Xiaodong GUO, Chaoying ZHOU(), Shu’ao WAN
Received:
2022-09-05
Revised:
2022-09-23
Accepted:
2022-11-16
Online:
2023-08-25
Published:
2022-12-14
Contact:
Chaoying ZHOU
E-mail:cyzhou@hit.edu.cn
Supported by:
CLC Number:
Xiaodong GUO, Chaoying ZHOU, Shu’ao WAN. Effects of rectangular pulsed jets on drag and heat reduction of long penetration mode[J]. Acta Aeronautica et Astronautica Sinica, 2023, 44(16): 127967-127967.
Table 4
Comparison of drag coefficients and heat flux of different amplitudes under rectangular pulsed jet
Amplitude/kPa | ||
---|---|---|
Steady jet | 0.456 9 | 0.024 2 |
0.010 | 0.045 7 | 0.012 4 |
0.050 | 0.458 3 | 0.011 3 |
0.070 | 0.472 5 | 0.007 5 |
0.250 | 0.473 4 | 0.007 0 |
0.500 | 0.519 1 | 0.006 4 |
0.700 | 0.578 5 | 0.003 2 |
1.000 | 0.647 6 | 0.003 7 |
1.250 | 0.649 1 | 0.004 8 |
1.500 | 0.650 0 | 0.008 0 |
1.750 | 0.651 6 | 0.008 6 |
Table 5
Dominant frequencies of drag coefficients at different rectangular pulse jet frequencies
Jet frequency/kHz | Dominant frequency/kHz | Jet frequency/kHz | Dominant frequency/kHz | ||||
---|---|---|---|---|---|---|---|
Steady jet | 1.000 0 | 0.456 9 | 0.024 2 | 5.0 | 5.000 0 | 0.530 9 | 0.010 2 |
0.5 | 0.500 0 | 0.511 2 | 0.004 5 | 10.0 | 10.000 0 | 0.492 6 | 0.018 3 |
1.0 | 1.000 0 | 0.578 5 | 0.003 2 | 20.0 | 20.000 0 | 0.471 5 | 0.018 0 |
1.8 | 1.833 2 | 0.581 6 | 0.002 1 | 50.0 | 1.000 0 | 0.460 8 | 0.017 2 |
2.0 | 2.000 0 | 0.586 7 | 0.001 9 | 100.0 | 0.833 3 | 0.455 3 | 0.012 4 |
3.0 | 3.000 0 | 0.546 8 | 0.002 1 | 200.0 | 1.166 5 | 0.476 2 | 0.011 8 |
4.0 | 4.000 0 | 0.540 7 | 0.004 5 | 500.0 | 1.165 3 | 0.458 4 | 0.007 0 |
1 | HUANG W, CHEN Z, YAN L, et al. Drag and heat flux reduction mechanism induced by the spike and its combinations in supersonic flows: A review[J]. Progress in Aerospace Sciences, 2019, 105: 31-39. |
2 | GERDROODBARY M B. Numerical analysis on cooling performance of counterflowing jet over aerodisked blunt body[J]. Shock Waves, 2014, 24(5): 537-543. |
3 | 张涵信, 黄洁, 高树椿. 带尖针杆的钝体粘性绕流的数值模拟[J]. 航空学报, 1994, 15(5): 519-525. |
ZHANG H X, HUANG J, GAO S C. Numerical simulation of hypersonic flow over axisymmetric spiked body[J]. Acta Aeronautica et Astronautica Sinica, 1994, 15(5): 519-525. (in Chinese) | |
4 | PHAM H S, SHODA T, TAMBA T, et al. Impacts of laser energy deposition on flow instability over double-cone model[J]. AIAA Journal, 2017, 55(9): 2992-3000. |
5 | 周岩, 罗振兵, 王林, 等. 等离子体合成射流激励器及其流动控制技术研究进展[J]. 航空学报, 2022, 43(3): 025027. |
ZHOU Y, LUO Z B, WANG L, et al. Plasma synthetic jet actuator for flow control: Review[J]. Acta Aeronautica et Astronautica Sinica, 2022, 43(3): 025027 (in Chinese). | |
6 | 马正雪, 罗振兵, 赵爱红, 等. 高超声速流场等离子体合成射流逆向喷流特性[J]. 航空学报, 2022, 43(S2): 727747. |
MA Z X, LUO Z B, ZHAO A H, et al. Reverse jet characteristics of plasma synthetic jet in hypersonic flow field[J]. Acta Aeronautica et Astronautica Sinica, 2022, 43(S2): 727747 (in Chinese). | |
7 | 吴忧, 徐旭, 陈兵, 等. 高马赫数下横/逆向喷流干扰流场数值研究[J]. 航空学报, 2021, 42(S1): 726359. |
WU Y, XU X, CHEN B, et al. Numerical study on transverse/opposing jet interaction flowfield under high Mach number[J]. Acta Aeronautica et Astronautica Sinica, 2021, 42(S1): 726359 (in Chinese). | |
8 | 戎宜生, 刘伟强. 再入飞行器鼻锥逆向喷流对流场及气动热的影响[J]. 航空学报, 2010, 31(8): 1552-1557. |
RONG Y S, LIU W Q. Influence of opposing jet on flow field and aerodynamic heating at nose of a reentry vehicle[J]. Acta Aeronautica et Astronautica Sinica, 2010, 31(8): 1552-1557 (in Chinese). | |
9 | ZHOU C Y, JI W Y, ZHANG X W, et al. Numerical investigation on counter-flow jet drag reduction of a spherical body[J]. Engineering Mechanics, 2013, 30(1):441-447. |
10 | HUANG J, YAO W X. A novel non-ablative thermal protection system with combined spike and opposing jet concept[J]. Acta Astronautica, 2019, 159: 41-48. |
11 | ZHANG R R, DONG M Z, HUANG W, et al. Drag and heat flux reduction mechanism induced by the combinational forward-facing cavity and pulsed counterflowing jet configuration in supersonic flows[J]. Acta Astronautica, 2019, 160: 62-75. |
12 | HUANG W, ZHAO Z T, YAN L, et al. Parametric study on the drag and heat flux reduction mechanism of forward-facing cavity on a blunt body in supersonic flows[J]. Aerospace Science and Technology, 2017, 71: 619-626. |
13 | FINLEY P J. The flow of a jet from a body opposing a supersonic free stream[J]. Journal of Fluid Mechanics, 1966, 26(2): 337-368. |
14 | ADAMS R. The effects of retrorockets on the aerodynamic characteristics of conical aeroshell planetary entry vehicles: AIAA-1970-0219[R]. Reston: AIAA, 1970. |
15 | BILAL H, SHAH S, LU X Y. Computational study of drag reduction at various freestream flows using a counterflow jet from a hemispherical cylinder[J]. Engineering Applications of Computational Fluid Mechanics, 2010, 4(1): 150-163. |
16 | KULKARNI V, REDDY K. Counterflow drag reduction studies for a blunt cone in high enthalpy flow[J]. International Journal of Hypersonics, 2010, 1(1): 69-76. |
17 | FOMICHEV V P, FOMIN V M, KOROTAEVA T A, et al. Hypersonic flow around a blunted body with counterflow plasma jet[R]. Novosibirsk: Institute of Theoretical and Applied Mechanics, 2002. |
18 | SHEN B X, LIU W Q, YIN L. Drag and heat reduction efficiency research on opposing jet in supersonic flows[J]. Aerospace Science and Technology, 2018, 77: 696-703. |
19 | ZHANG R R, HUANG W, LI L Q, et al. Drag and heat flux reduction induced by the pulsed counterflowing jet with different periods on a blunt body in supersonic flows[J]. International Journal of Heat and Mass Transfer, 2018, 127: 503-512. |
20 | GUO J H, LIN G P, BU X Q, et al. Parametric study on the heat transfer of a blunt body with counterflowing jets in hypersonic flows[J]. International Journal of Heat and Mass Transfer, 2018, 121: 84-96. |
21 | ZHOU C Y, JI W Y. A three-dimensional numerical investigation on drag reduction of a supersonic spherical body with an opposing jet[J]. Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering, 2014, 228(2): 163-177. |
22 | LI S B, HUANG W, LEI J, et al. Drag and heat reduction mechanism of the porous opposing jet for variable blunt hypersonic vehicles[J]. International Journal of Heat and Mass Transfer, 2018, 126: 1087-1098. |
23 | DENG F, XIE F, HUANG W, et al. Numerical exploration on jet oscillation mechanism of counterflowing jet ahead of a hypersonic lifting-body vehicle[J]. Science China Technological Sciences, 2018, 61(7): 1056-1071. |
24 | ZHANG R R, HUANG W, YAN L, et al. Drag and heat flux reduction induced by the pulsed counterflowing jet with different waveforms on a blunt body in supersonic flows[J]. Acta Astronautica, 2019, 160: 635-645. |
25 | ASO S, HAYASHI K, MIZOGUCHI M. A study on aerodynamic heating reduction due to opposing jet in hypersonic flow:AIAA-2002-0646[R]. Reston: AIAA, 2002. |
26 | MEN'SHOV I S, NAKAMURA Y. Numerical simulations and experimental comparisons for high-speed nonequilibrium air flows[J]. Fluid Dynamics Research, 2000, 27(5): 305-334. |
27 | PARK C. Assessment of two-temperature kinetic model for ionizing air[J]. Journal of Thermophysics and Heat Transfer, 1989, 3(3): 233-244. |
28 | GNOFFO P A, GUPTA R N, SHINN J L. Conservation equations and physical models for hypersonic air flows in thermal and chemical nonequilibrium[R]. Washington, D.C.: NASA, 1989. |
29 | SARMA G S R. Physico-chemical modelling in hypersonic flow simulation[J]. Progress in Aerospace Sciences, 2000, 36(3-4): 281-349. |
30 | CANDLER G V, NOMPELIS I. Computational fluid dynamics for atmospheric entry: Mathematics-2009- 58908 [R]: Minnesota: University of Minnesota, 2009. |
31 | PARK C. Problems of rate chemistry in the flight regimes of aeroassisted orbital transfer vehicles: AIAA-1984-1730[R]. Reston: AIAA, 1984. |
32 | BIRD G A. The DSMC method[M]. 2nd ed. Sydney: Physics, 2013: 105-107. |
33 | CASSEAU V. An open-source CFD solver for planetary entry[D]. Glasgow: University of Strathclyde, 2017:13-15. |
34 | ZHANG R R, HUANG W, YAN L, et al. Numerical investigation of drag and heat flux reduction mechanism of the pulsed counterflowing jet on a blunt body in supersonic flows[J]. Acta Astronautica, 2018, 146: 123-133. |
35 | MACLEAN M, MARINEAU E, PARKER R, et al. Effect of surface catalysis on measured heat transfer in expansion tunnel facility[J]. Journal of Spacecraft and Rockets, 2013, 50(2): 470-475. |
36 | YANG J L, LIU M. Numerical analysis of hypersonic thermochemical non-equilibrium environment for an entry configuration in ionized flow[J]. Chinese Journal of Aeronautics, 2019, 32(12): 2641-2654. |
37 | MEN'SHOV I S, NAKAMURA Y. Numerical simulations and experimental comparisons for high-speed nonequilibrium air flows[J]. Fluid Dynamics Research, 2000, 27(5): 305-334. |
38 | 张智超, 高振勋, 蒋崇文, 等. 高超声速气动热数值计算壁面网格准则[J]. 北京航空航天大学学报, 2015, 41(4): 594-600. |
ZHANG Z C, GAO Z X, JIANG C W, et al. Grid generation criterions in hypersonic aeroheating computations[J]. Journal of Beijing University of Aeronautics and Astronautics, 2015, 41(4): 594-600 (in Chinese). | |
39 | YANG X F, TANG W, GUI Y W, et al. Hypersonic static aerodynamics for Mars science laboratory entry capsule[J]. Acta Astronautica, 2014, 103: 168-175. |
40 | BIBI A, MAQSOOD A, SHERBAZ S, et al. Drag reduction of supersonic blunt bodies using opposing jet and nozzle geometric variations[J]. Aerospace Science and Technology, 2017, 69: 244-256. |
41 | GUO X D, ZHOU C Y. Unsteady behavior of long-penetration mode with a counterflowing jet[J]. Journal of Aerospace Engineering, 2023, 36(1): 04022111. |
[1] | Jiancheng ZHENG, Zhiguo QU, Xiansi TAN, Zhihuai LI, Gang ZHU, Lujun LI, Wei LIU. Resource management for hypersonic target detection by radar network based on responsibility area partitioning [J]. Acta Aeronautica et Astronautica Sinica, 2024, 45(8): 329022-329022. |
[2] | Jinzhao DAI, Haixin CHEN. Optimization design method of three⁃dimensional wave cancellation biplane derived by shock⁃wave morphology [J]. Acta Aeronautica et Astronautica Sinica, 2024, 45(6): 628942-628942. |
[3] | Xiaoyong LIU, Mingfu WANG, Jianwen LIU, Xin REN, Xuan ZHANG. Review and prospect of research on scramjet [J]. Acta Aeronautica et Astronautica Sinica, 2024, 45(5): 529878-529878. |
[4] | Bo YANG, He YU, Zichen FAN. Micro-energy analysis method for time-varying error of aero-optical effects [J]. Acta Aeronautica et Astronautica Sinica, 2024, 45(4): 128703-128703. |
[5] | Xueliang LI, Chuangchuang LI, Wei SU, Jie WU. Experiment of influence of distributed roughness elements on hypersonic boundary layer instability [J]. Acta Aeronautica et Astronautica Sinica, 2024, 45(2): 128627-128627. |
[6] | Jiang LAI, Zhaolin FAN, Qian WANG, Siwei DONG, Fulin TONG, Xianxu YUAN. Direct numerical simulation of hypersonic cone-flare model at angle of attack [J]. Acta Aeronautica et Astronautica Sinica, 2024, 45(2): 128610-128610. |
[7] | Youde XIONG, Chuangchuang LI, Zhenhui ZHANG, Jie WU. Measurement of freestream disturbance in hypersonic wind tunnel with hot-wire anemometer [J]. Acta Aeronautica et Astronautica Sinica, 2024, 45(10): 129042-129042. |
[8] | Weilin NI, Yonghai WANG, Cong XU, Fenghua CHI, Haizhao LIANG. Cooperative game guidance method for hypersonic vehicles based on reinforcement learning [J]. Acta Aeronautica et Astronautica Sinica, 2023, 44(S2): 729400-729400. |
[9] | Zhefeng YU, Shichang LIANG, Weibo SHI, Deyang TIAN, Anhua SHI, Dongjun LIAO, Ying YANG. Analysis and evaluation technology for optical radiation and radar scattering characteristics of HTV⁃2⁃like vehicle [J]. Acta Aeronautica et Astronautica Sinica, 2023, 44(S2): 729465-729465. |
[10] | Ping MA, Ning ZHANG, Anhua SHI, Zhefeng YU, Shichang LIANG, Jie HUANG. Transmission characteristics of typical band microwave in experiment⁃simulated plasma [J]. Acta Aeronautica et Astronautica Sinica, 2023, 44(S2): 729476-729476. |
[11] | Yuemeng MA, Ming LIU, Ding YANG, Ming YANG, Mingang ZHANG, Yajie GE. Prescribed performance and anti⁃noise control of near space vehicle with thermal constraint [J]. Acta Aeronautica et Astronautica Sinica, 2023, 44(S2): 729390-729390. |
[12] | Haoyu CHEN, Binwen WANG, Qiaozhi SONG, Xiaodong LI. Thermal flutter ground simulation test [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2023, 44(8): 227295-227295. |
[13] | Siyuan CHANG, Yao XIAO, Guangli LI, Zhongwei TIAN, Kaikai ZHANG, Kai CUI. Effect of wing dihedral and anhedral angles on hypersonic aerodynamic characteristics of high-pressure capturing wing configuration [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2023, 44(8): 127349-127349. |
[14] | Hongkang LIU, Jianqiang CHEN, Xinghao XIANG, Yatian ZHAO. Transition prediction for HIAD with different Reynolds numbers by improved k-ω-γtransition model [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2023, 44(6): 126868-126868. |
[15] | Guotao YANG, Zhenjiang YUE, Li LIU. Rapid prediction of global hypersonic vehicle aerothermodynamics based on adaptive sampling [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2023, 44(6): 127391-127391. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
Address: No.238, Baiyan Buiding, Beisihuan Zhonglu Road, Haidian District, Beijing, China
Postal code : 100083
E-mail:hkxb@buaa.edu.cn
Total visits: 6658907 Today visits: 1341All copyright © editorial office of Chinese Journal of Aeronautics
All copyright © editorial office of Chinese Journal of Aeronautics
Total visits: 6658907 Today visits: 1341