Acta Aeronautica et Astronautica Sinica ›› 2023, Vol. 44 ›› Issue (16): 127967.doi: 10.7527/S1000-6893.2022.27967
• Fluid Mechanics and Flight Mechanics • Previous Articles Next Articles
Xiaodong GUO, Chaoying ZHOU(
), Shu’ao WAN
Received:2022-09-05
Revised:2022-09-23
Accepted:2022-11-16
Online:2023-08-25
Published:2022-12-14
Contact:
Chaoying ZHOU
E-mail:cyzhou@hit.edu.cn
Supported by:CLC Number:
Xiaodong GUO, Chaoying ZHOU, Shu’ao WAN. Effects of rectangular pulsed jets on drag and heat reduction of long penetration mode[J]. Acta Aeronautica et Astronautica Sinica, 2023, 44(16): 127967.
Table 4
Comparison of drag coefficients and heat flux of different amplitudes under rectangular pulsed jet
| Amplitude/kPa | ||
|---|---|---|
| Steady jet | 0.456 9 | 0.024 2 |
| 0.010 | 0.045 7 | 0.012 4 |
| 0.050 | 0.458 3 | 0.011 3 |
| 0.070 | 0.472 5 | 0.007 5 |
| 0.250 | 0.473 4 | 0.007 0 |
| 0.500 | 0.519 1 | 0.006 4 |
| 0.700 | 0.578 5 | 0.003 2 |
| 1.000 | 0.647 6 | 0.003 7 |
| 1.250 | 0.649 1 | 0.004 8 |
| 1.500 | 0.650 0 | 0.008 0 |
| 1.750 | 0.651 6 | 0.008 6 |
Table 5
Dominant frequencies of drag coefficients at different rectangular pulse jet frequencies
| Jet frequency/kHz | Dominant frequency/kHz | Jet frequency/kHz | Dominant frequency/kHz | ||||
|---|---|---|---|---|---|---|---|
| Steady jet | 1.000 0 | 0.456 9 | 0.024 2 | 5.0 | 5.000 0 | 0.530 9 | 0.010 2 |
| 0.5 | 0.500 0 | 0.511 2 | 0.004 5 | 10.0 | 10.000 0 | 0.492 6 | 0.018 3 |
| 1.0 | 1.000 0 | 0.578 5 | 0.003 2 | 20.0 | 20.000 0 | 0.471 5 | 0.018 0 |
| 1.8 | 1.833 2 | 0.581 6 | 0.002 1 | 50.0 | 1.000 0 | 0.460 8 | 0.017 2 |
| 2.0 | 2.000 0 | 0.586 7 | 0.001 9 | 100.0 | 0.833 3 | 0.455 3 | 0.012 4 |
| 3.0 | 3.000 0 | 0.546 8 | 0.002 1 | 200.0 | 1.166 5 | 0.476 2 | 0.011 8 |
| 4.0 | 4.000 0 | 0.540 7 | 0.004 5 | 500.0 | 1.165 3 | 0.458 4 | 0.007 0 |
| 1 | HUANG W, CHEN Z, YAN L, et al. Drag and heat flux reduction mechanism induced by the spike and its combinations in supersonic flows: A review[J]. Progress in Aerospace Sciences, 2019, 105: 31-39. |
| 2 | GERDROODBARY M B. Numerical analysis on cooling performance of counterflowing jet over aerodisked blunt body[J]. Shock Waves, 2014, 24(5): 537-543. |
| 3 | 张涵信, 黄洁, 高树椿. 带尖针杆的钝体粘性绕流的数值模拟[J]. 航空学报, 1994, 15(5): 519-525. |
| ZHANG H X, HUANG J, GAO S C. Numerical simulation of hypersonic flow over axisymmetric spiked body[J]. Acta Aeronautica et Astronautica Sinica, 1994, 15(5): 519-525. (in Chinese) | |
| 4 | PHAM H S, SHODA T, TAMBA T, et al. Impacts of laser energy deposition on flow instability over double-cone model[J]. AIAA Journal, 2017, 55(9): 2992-3000. |
| 5 | 周岩, 罗振兵, 王林, 等. 等离子体合成射流激励器及其流动控制技术研究进展[J]. 航空学报, 2022, 43(3): 025027. |
| ZHOU Y, LUO Z B, WANG L, et al. Plasma synthetic jet actuator for flow control: Review[J]. Acta Aeronautica et Astronautica Sinica, 2022, 43(3): 025027 (in Chinese). | |
| 6 | 马正雪, 罗振兵, 赵爱红, 等. 高超声速流场等离子体合成射流逆向喷流特性[J]. 航空学报, 2022, 43(S2): 727747. |
| MA Z X, LUO Z B, ZHAO A H, et al. Reverse jet characteristics of plasma synthetic jet in hypersonic flow field[J]. Acta Aeronautica et Astronautica Sinica, 2022, 43(S2): 727747 (in Chinese). | |
| 7 | 吴忧, 徐旭, 陈兵, 等. 高马赫数下横/逆向喷流干扰流场数值研究[J]. 航空学报, 2021, 42(S1): 726359. |
| WU Y, XU X, CHEN B, et al. Numerical study on transverse/opposing jet interaction flowfield under high Mach number[J]. Acta Aeronautica et Astronautica Sinica, 2021, 42(S1): 726359 (in Chinese). | |
| 8 | 戎宜生, 刘伟强. 再入飞行器鼻锥逆向喷流对流场及气动热的影响[J]. 航空学报, 2010, 31(8): 1552-1557. |
| RONG Y S, LIU W Q. Influence of opposing jet on flow field and aerodynamic heating at nose of a reentry vehicle[J]. Acta Aeronautica et Astronautica Sinica, 2010, 31(8): 1552-1557 (in Chinese). | |
| 9 | ZHOU C Y, JI W Y, ZHANG X W, et al. Numerical investigation on counter-flow jet drag reduction of a spherical body[J]. Engineering Mechanics, 2013, 30(1):441-447. |
| 10 | HUANG J, YAO W X. A novel non-ablative thermal protection system with combined spike and opposing jet concept[J]. Acta Astronautica, 2019, 159: 41-48. |
| 11 | ZHANG R R, DONG M Z, HUANG W, et al. Drag and heat flux reduction mechanism induced by the combinational forward-facing cavity and pulsed counterflowing jet configuration in supersonic flows[J]. Acta Astronautica, 2019, 160: 62-75. |
| 12 | HUANG W, ZHAO Z T, YAN L, et al. Parametric study on the drag and heat flux reduction mechanism of forward-facing cavity on a blunt body in supersonic flows[J]. Aerospace Science and Technology, 2017, 71: 619-626. |
| 13 | FINLEY P J. The flow of a jet from a body opposing a supersonic free stream[J]. Journal of Fluid Mechanics, 1966, 26(2): 337-368. |
| 14 | ADAMS R. The effects of retrorockets on the aerodynamic characteristics of conical aeroshell planetary entry vehicles: AIAA-1970-0219[R]. Reston: AIAA, 1970. |
| 15 | BILAL H, SHAH S, LU X Y. Computational study of drag reduction at various freestream flows using a counterflow jet from a hemispherical cylinder[J]. Engineering Applications of Computational Fluid Mechanics, 2010, 4(1): 150-163. |
| 16 | KULKARNI V, REDDY K. Counterflow drag reduction studies for a blunt cone in high enthalpy flow[J]. International Journal of Hypersonics, 2010, 1(1): 69-76. |
| 17 | FOMICHEV V P, FOMIN V M, KOROTAEVA T A, et al. Hypersonic flow around a blunted body with counterflow plasma jet[R]. Novosibirsk: Institute of Theoretical and Applied Mechanics, 2002. |
| 18 | SHEN B X, LIU W Q, YIN L. Drag and heat reduction efficiency research on opposing jet in supersonic flows[J]. Aerospace Science and Technology, 2018, 77: 696-703. |
| 19 | ZHANG R R, HUANG W, LI L Q, et al. Drag and heat flux reduction induced by the pulsed counterflowing jet with different periods on a blunt body in supersonic flows[J]. International Journal of Heat and Mass Transfer, 2018, 127: 503-512. |
| 20 | GUO J H, LIN G P, BU X Q, et al. Parametric study on the heat transfer of a blunt body with counterflowing jets in hypersonic flows[J]. International Journal of Heat and Mass Transfer, 2018, 121: 84-96. |
| 21 | ZHOU C Y, JI W Y. A three-dimensional numerical investigation on drag reduction of a supersonic spherical body with an opposing jet[J]. Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering, 2014, 228(2): 163-177. |
| 22 | LI S B, HUANG W, LEI J, et al. Drag and heat reduction mechanism of the porous opposing jet for variable blunt hypersonic vehicles[J]. International Journal of Heat and Mass Transfer, 2018, 126: 1087-1098. |
| 23 | DENG F, XIE F, HUANG W, et al. Numerical exploration on jet oscillation mechanism of counterflowing jet ahead of a hypersonic lifting-body vehicle[J]. Science China Technological Sciences, 2018, 61(7): 1056-1071. |
| 24 | ZHANG R R, HUANG W, YAN L, et al. Drag and heat flux reduction induced by the pulsed counterflowing jet with different waveforms on a blunt body in supersonic flows[J]. Acta Astronautica, 2019, 160: 635-645. |
| 25 | ASO S, HAYASHI K, MIZOGUCHI M. A study on aerodynamic heating reduction due to opposing jet in hypersonic flow:AIAA-2002-0646[R]. Reston: AIAA, 2002. |
| 26 | MEN'SHOV I S, NAKAMURA Y. Numerical simulations and experimental comparisons for high-speed nonequilibrium air flows[J]. Fluid Dynamics Research, 2000, 27(5): 305-334. |
| 27 | PARK C. Assessment of two-temperature kinetic model for ionizing air[J]. Journal of Thermophysics and Heat Transfer, 1989, 3(3): 233-244. |
| 28 | GNOFFO P A, GUPTA R N, SHINN J L. Conservation equations and physical models for hypersonic air flows in thermal and chemical nonequilibrium[R]. Washington, D.C.: NASA, 1989. |
| 29 | SARMA G S R. Physico-chemical modelling in hypersonic flow simulation[J]. Progress in Aerospace Sciences, 2000, 36(3-4): 281-349. |
| 30 | CANDLER G V, NOMPELIS I. Computational fluid dynamics for atmospheric entry: Mathematics-2009- 58908 [R]: Minnesota: University of Minnesota, 2009. |
| 31 | PARK C. Problems of rate chemistry in the flight regimes of aeroassisted orbital transfer vehicles: AIAA-1984-1730[R]. Reston: AIAA, 1984. |
| 32 | BIRD G A. The DSMC method[M]. 2nd ed. Sydney: Physics, 2013: 105-107. |
| 33 | CASSEAU V. An open-source CFD solver for planetary entry[D]. Glasgow: University of Strathclyde, 2017:13-15. |
| 34 | ZHANG R R, HUANG W, YAN L, et al. Numerical investigation of drag and heat flux reduction mechanism of the pulsed counterflowing jet on a blunt body in supersonic flows[J]. Acta Astronautica, 2018, 146: 123-133. |
| 35 | MACLEAN M, MARINEAU E, PARKER R, et al. Effect of surface catalysis on measured heat transfer in expansion tunnel facility[J]. Journal of Spacecraft and Rockets, 2013, 50(2): 470-475. |
| 36 | YANG J L, LIU M. Numerical analysis of hypersonic thermochemical non-equilibrium environment for an entry configuration in ionized flow[J]. Chinese Journal of Aeronautics, 2019, 32(12): 2641-2654. |
| 37 | MEN'SHOV I S, NAKAMURA Y. Numerical simulations and experimental comparisons for high-speed nonequilibrium air flows[J]. Fluid Dynamics Research, 2000, 27(5): 305-334. |
| 38 | 张智超, 高振勋, 蒋崇文, 等. 高超声速气动热数值计算壁面网格准则[J]. 北京航空航天大学学报, 2015, 41(4): 594-600. |
| ZHANG Z C, GAO Z X, JIANG C W, et al. Grid generation criterions in hypersonic aeroheating computations[J]. Journal of Beijing University of Aeronautics and Astronautics, 2015, 41(4): 594-600 (in Chinese). | |
| 39 | YANG X F, TANG W, GUI Y W, et al. Hypersonic static aerodynamics for Mars science laboratory entry capsule[J]. Acta Astronautica, 2014, 103: 168-175. |
| 40 | BIBI A, MAQSOOD A, SHERBAZ S, et al. Drag reduction of supersonic blunt bodies using opposing jet and nozzle geometric variations[J]. Aerospace Science and Technology, 2017, 69: 244-256. |
| 41 | GUO X D, ZHOU C Y. Unsteady behavior of long-penetration mode with a counterflowing jet[J]. Journal of Aerospace Engineering, 2023, 36(1): 04022111. |
| [1] | Guoliang RONG, Yifan YANG, Chuangchuang LI, Zhiyuan LI, Xueliang LI, Jiaquan ZHAO, Jie WU. Integrated design of homogeneous mixing and heating of flow based on dual-throat Ludwieg tube wind tunnel settling chamber [J]. Acta Aeronautica et Astronautica Sinica, 2025, 46(9): 130906-130906. |
| [2] | Jianyu XU, Li ZHOU, Zhanxue WANG, Jie SHI, Hao SHI. Calculation method for hypersonic plume infrared radiation based on a fast line-by-line calculation model [J]. Acta Aeronautica et Astronautica Sinica, 2025, 46(8): 630778-630778. |
| [3] | Feiteng LUO, Zhenming QU, Haitao LI, Xinke LI, Dahao YAO, Wenjuan CHEN, Yaosong LONG, Baoxi WEI, Yanjin MAN, Fujiang YANG, Qiang CHENG, Wubin KONG. Research progress and key issues of inlet pre-injection at hypersonic condition [J]. Acta Aeronautica et Astronautica Sinica, 2025, 46(8): 631189-631189. |
| [4] | Lixiang WEI, Jinglei XU, Kuangshi CHEN, Shuai HUANG, Jianhui GE, Guangtao SONG. Scheme design and performance study of adjustable vector nozzle for wide-range hypersonic aircraft [J]. Acta Aeronautica et Astronautica Sinica, 2025, 46(8): 631086-631086. |
| [5] | Xiaogang ZHENG, Zhancang HU, Zejun CAI, Chongguang SHI, Chengxiang ZHU, Yancheng YOU. Design of 3D inward-turning inlet considering cruising angle of attack [J]. Acta Aeronautica et Astronautica Sinica, 2025, 46(8): 631233-631233. |
| [6] | Xiaogang ZHENG, Chongguang SHI, Jiale ZHANG, Mi ZHANG, Wenlei ZHU, Chengxiang ZHU, Yancheng YOU. Research progress review on hypersonic three-dimensional inward-turning inlet [J]. Acta Aeronautica et Astronautica Sinica, 2025, 46(8): 631245-631245. |
| [7] | Zonglin JIANG, Guilai HAN, Yunpeng WANG, Yunfeng LIU, Chaokai YUAN, Changtong LUO, Chun WANG, Zongmin HU, Meikuan LIU. Theoretical bases and key technologies of JF-22 hypervelocity wind tunnel [J]. Acta Aeronautica et Astronautica Sinica, 2025, 46(5): 531130-531130. |
| [8] | Feng QU, Qing WANG, Shaowen CHENG, Kaiqiang WANG. Aerodynamic shape optimization design of airframe/propulsion integrated hypersonic aircraft with aerodynamics/trajectory/ control coupling [J]. Acta Aeronautica et Astronautica Sinica, 2025, 46(4): 130874-130874. |
| [9] | Jun CHEN, Feng QU, Junjie FU. Design method of hypersonic inward turning inlet based on genetic and gradient hybrid optimization strategy [J]. Acta Aeronautica et Astronautica Sinica, 2025, 46(3): 130808-130808. |
| [10] | Kai YANG, Mengfei ZHANG, Chongguang SHI, Yaokun YU, Xiaogang ZHENG, Chengxiang ZHU, Yancheng YOU. Method of three-dimensional curved stream-surface and its application in external waverider [J]. Acta Aeronautica et Astronautica Sinica, 2025, 46(2): 130492-130492. |
| [11] | Xueliang LI, Chuangchuang LI, Yahan ZHANG, Wei SU, Jie WU. Effect of distributed ablation pattern on hypersonic boundary-layer instability with a flat plate [J]. Acta Aeronautica et Astronautica Sinica, 2025, 46(2): 130464-130464. |
| [12] | Yousheng WANG, Liguo SUN, Jinpeng WEI, Wenqian TAN, Yonghao PAN. Optimization of climb trajectory of combined-cycle engine powered aircraft based on improved CSO-Gauss pseudospectral method [J]. Acta Aeronautica et Astronautica Sinica, 2025, 46(2): 230737-230737. |
| [13] | Shanyue GUAN, Zhengyu TIAN, Wenjia XIE, Qianyue FU, Yuhang CHU, Jiajun ZHU. Analysis of plasma chemical reactions of hypersonic reentry blunt in flight corridor [J]. Acta Aeronautica et Astronautica Sinica, 2025, 46(18): 131735-131735. |
| [14] | Yicheng QIU, Chaokai YUAN, Guilai HAN. Numerical simulation methods for aircraft exposed to lightning strikes [J]. Acta Aeronautica et Astronautica Sinica, 2025, 46(18): 131899-131899. |
| [15] | Honglin LIU, Guan WANG, Shuaibin AN, Shaojie MA, Kai LIU. Online identification based strong adaptive control of hypersonic morphing vehicles [J]. Acta Aeronautica et Astronautica Sinica, 2025, 46(17): 331654-331654. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||
Address: No.238, Baiyan Buiding, Beisihuan Zhonglu Road, Haidian District, Beijing, China
Postal code : 100083
E-mail:hkxb@buaa.edu.cn
Total visits: 6658907 Today visits: 1341All copyright © editorial office of Chinese Journal of Aeronautics
All copyright © editorial office of Chinese Journal of Aeronautics
Total visits: 6658907 Today visits: 1341

