1 |
SCHERRER R, GOWEN F E. Preliminary experimental investigation of a variable-area, variable-internal-contraction air inlet at Mach numbers between 1.42 and 2.44: NACA RM A55F23[R]. Washington, D.C.: NASA, 1955.
|
2 |
SCHERRER R, ANDERSON W E. Investigation of the performance and internal flow of a variable-area, variable-internal-contraction inlet at Mach numbers of 2.00, 2.50, and 2.92: NACA RM A58C24[R]. Washington, D.C.: NASA, 1958.
|
3 |
FALEMPIN F, WENDLING E, GOLDFELD M, et al. Experimental investigation of starting process for a variable geometry air inlet operating from Mach 2 to Mach 8[C]∥ 42nd AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit. Reston: AIAA, 2006.
|
4 |
TAGUCHI H, YANAGI R. A study on pre-cooled turbojet-scramjet-rocket combined engines[C]∥ 34th AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit. Reston: AIAA, 1998.
|
5 |
SANDERS B W, WEIR L J. Aerodynamic design of a dual-flow Mach 7 hypersonic inlet system for a turbine-based combined-cycle hypersonic propulsion system: NASA/CR-2008-215214[R]. Washington, D.C.: NASA, 2008.
|
6 |
陈兵, 谷良贤, 龚春林. 加速型高超飞行器变几何进气道设计分析[J]. 固体火箭技术, 2013, 36(4): 431-436.
|
|
CHEN B, GU L X, GONG C L. Study on variable geometry inlet of acceleration hypersonic vehicle[J]. Journal of Solid Rocket Technology, 2013, 36(4): 431-436 (in Chinese).
|
7 |
王德鹏, 庄逸, 谭慧俊, 等. 一种双流路变几何涡轮基组合循环进气道的设计与仿真[J]. 航空动力学报, 2015, 30(11): 2695-2704.
|
|
WANG D P, ZHUANG Y, TAN H J, et al. Design and simulation of a dual-channel variable geometry turbine based combined cycle inlet[J]. Journal of Aerospace Power, 2015, 30(11): 2695-2704 (in Chinese).
|
8 |
李永洲, 刘晓伟, 张蒙正, 等. 马赫数2.5~7.0的二元变几何进气道设计[J]. 火箭推进, 2015, 41(5): 17-22.
|
|
LI Y Z, LIU X W, ZHANG M Z, et al. Design of a two dimensional variable geometry inlet with Mach number 2.5-7.0[J]. Journal of Rocket Propulsion, 2015, 41(5): 17-22 (in Chinese).
|
9 |
HOHN O, GUELHAN A. Analysis of a three-dimensional, high pressure ratio scramjet inlet with variable internal contraction[C]∥ 18th AIAA/3AF International Space Planes and Hypersonic Systems and Technologies Conference. Reston: AIAA, 2012.
|
10 |
李彪, 魏志军, 迟鸿伟, 等. 进气道内压缩比对固体燃料超燃冲压发动机性能的影响[J]. 航空动力学报, 2016, 31(2): 459-466.
|
|
LI B, WEI Z J, CHI H W, et al. Effect of inlet internal contraction ratio on performance of solid fuel scramjet[J]. Journal of Aerospace Power, 2016, 31(2): 459-466 (in Chinese).
|
11 |
JIN Y, SUN S, TAN H J. Flow response hysteresis of throat regulation process of a two-dimensional mixed-compression supersonic inlet[J]. Chinese Journal of Aeronautics, 2022, 35(3): 112-127.
|
12 |
MURTHY S N B, CURRAN E T. Scramjet Propulsion[M]. Reston: AIAA, 2001: 447⁃511.
|
13 |
VAN WIE D, KWOK F, WALSH R. Starting characteristics of supersonic inlets[C]∥ 32nd Joint Propulsion Conference and Exhibit. Reston: AIAA, 1996.
|
14 |
LIU Y, WANG L, QIAN Z S, et al. Numerical investigation on the assistant restarting method of variable geometry for high Mach number inlet[J]. Aerospace Science and Technology, 2018, 79: 647-657.
|
15 |
YUE L J, JIA Y N, XU X, et al. Effect of cowl shock on restart characteristics of simple ramp type hypersonic inlets with thin boundary layers[J]. Aerospace Science and Technology, 2018, 74: 72-80.
|
16 |
TAN H J, LI L G, WEN Y F, et al. Experimental investigation of the unstart process of a generic hypersonic inlet[J]. AIAA Journal, 2011, 49(2): 279-288.
|
17 |
WAGNER J L, YUCEIL K B, VALDIVIA A, et al. Experimental investigation of unstart in an inlet/isolator model in Mach 5 flow[J]. AIAA Journal, 2009, 47(6): 1528-1542.
|
18 |
MURAKAMI A, YANAGI R, SHINDO S, et al. Mach 3 wind tunnel test of mixed compression supersonic inlet[C]∥ 28th Joint Propulsion Conference and Exhibit. Reston: AIAA, 1992.
|
19 |
REINARTZ B U, HERRMANN C D, BALLMANN J, et al. Aerodynamic performance analysis of a hypersonic inlet isolator using computation and experiment[J]. Journal of Propulsion and Power, 2003, 19(5): 868-875.
|
20 |
TRAPIER S, DUVEAU P, DECK S. Experimental study of supersonic inlet buzz[J]. AIAA Journal, 2006, 44(10): 2354-2365.
|
21 |
LEE H J, LEE B J, KIM S D, et al. Flow characteristics of small-sized supersonic inlets[J]. Journal of Propulsion and Power, 2011, 27(2): 306-318.
|
22 |
ZHANG J S, YUAN H C, WANG Y F, et al.Experiment and numerical investigation of flow control on a supersonic inlet diffuser[J]. Aerospace Science and Technology, 2020, 106: 106182.
|
23 |
LI Z F, GAO W Z, JIANG H L, et al. Unsteady behaviors of a hypersonic inlet caused by throttling in shock tunnel[J]. AIAA Journal, 2013, 51(10): 2485-2492.
|
24 |
王晨曦, 谭慧俊, 张启帆, 等. 高超声速进气道低马赫数不起动和再起动试验[J]. 航空学报, 2017, 38(11): 43-54.
|
|
WANG C X, TAN H J, ZHANG Q F, et al. Test of low Mach number unstart and restart processes of hypersonic inlet[J]. Acta Aeronautica et Astronautica Sinica, 2017, 38(11): 43-54 (in Chinese).
|
25 |
ZHUANG Y, TAN H J, HUANG H X, et al. Fractal characteristics of turbulent⁃non⁃turbulent interface in supersonic turbulent boundary layers[J]. Journal of Fluid Mechanics, 2018, 843: R2.
|
26 |
CHEN H, TAN H J, LIU Y Z, et al. External-compression supersonic inlet free from violent buzz[J]. AIAA Journal, 2019, 57(6): 2513-2523.
|
27 |
MORLET J, ARENS G, FOURGEAU E, et al. Wave propagation and sampling theory—Part I: Complex signal and scattering in multilayered media[J]. Geophysics, 1982, 47(2): 203-221.
|
28 |
MORLET J, ARENS G, FOURGEAU E, et al. Wave propagation and sampling theory—Part II: Sampling theory and complex waves[J]. Geophysics, 1982, 47(2): 222-236.
|
29 |
TAN H J, SUN S, HUANG H X. Behavior of shock trains in a hypersonic inlet/isolator model with complex background waves[J]. Experiments in Fluids, 2012, 53(6): 1647-1661.
|
30 |
XIONG B, FAN X Q, WANG Y, et al. Experimental study on self-excited and forced oscillations of an oblique shock train[J]. Journal of Spacecraft and Rockets, 2018, 55(3): 640-647.
|
31 |
LI N, CHANG J T, XU K J, et al. Oscillation of the shock train in an isolator with incident shocks[J]. Physics of Fluids, 2018, 30(11): 116102.
|
32 |
王德鑫, 褚佑彪, 刘难生, 等. 高背压进气道中内外流耦合作用的大涡模拟[J]. 航空学报, 2021, 42(9): 625754.
|
|
WANG D X, CHU Y B, LIU N S, et al. Large-eddy simulation of external and internal coupling flow in high back pressure inlet[J]. Acta Aeronautica et Astronautica Sinica, 2021, 42(9): 625754 (in Chinese).
|