ACTA AERONAUTICAET ASTRONAUTICA SINICA ›› 2023, Vol. 44 ›› Issue (7): 38-50.doi: 10.7527/S1000-6893.2022.26990
• Fluid Mechanics and Flight Mechanics • Previous Articles Next Articles
Yinkai MA, Zhufei LI(), Qi HUANG, Jiming YANG
Received:
2022-01-24
Revised:
2022-02-10
Accepted:
2022-03-04
Online:
2023-04-15
Published:
2022-03-11
Contact:
Zhufei LI
E-mail:lizhufei@ustc.edu.cn
Supported by:
CLC Number:
Yinkai MA, Zhufei LI, Qi HUANG, Jiming YANG. Wingtip vortex and its interaction with oblique shock wave in wide-speed range[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2023, 44(7): 38-50.
1 | MOSES P L. X-43C plans and status: AIAA-2003-7084 [R]. Reston: AIAA, 2003. |
2 | LONGSTAFF R, BOND A. The SKYLON project: AIAA-2011-2244[R]. Reston: AIAA, 2011. |
3 | MEHTA U, AFTOSMIS M, BOWLES J, et al. Skylon aerospace plane and its aerodynamics and plumes[J]. Journal of Spacecraft and Rockets, 2016, 53(2): 340-353. |
4 | SKUJINS T, CESNIK C E S, OPPENHEIMER M W, et al. Canard-elevon interactions on a hypersonic vehicle[J]. Journal of Spacecraft and Rockets, 2010, 47(1): 90-100. |
5 | HALLOCK J N, HOLZÄPFEL F. A review of recent wake vortex research for increasing airport capacity[J]. Progress in Aerospace Sciences, 2018, 98: 27-36. |
6 | CHENG Z P, QIU S Y, XIANG Y, et al. Instability characteristics of a co-rotating wingtip vortex pair based on bi-global linear stability analysis[J]. Chinese Journal of Aeronautics, 2021, 34(5): 1-16. |
7 | 程泽鹏, 邱思逸, 向阳, 等. 基于全局线性稳定性分析的翼尖双涡不稳定特征演化机理[J]. 航空学报, 2020, 41(9): 123751. |
CHENG Z P, QIU S Y, XIANG Y, et al. Evolution mechanism of instability features of wingtip vortex pairs based on bi-global linear stability analysis[J]. Acta Aeronautica et Astronautica Sinica, 2020, 41(9): 123751 (in Chinese). | |
8 | 邱思逸, 程泽鹏, 向阳, 等. 基于线性稳定性分析的翼尖涡摇摆机制[J]. 航空学报, 2019, 40(8): 122712. |
QIU S Y, CHENG Z P, XIANG Y, et al. Mechanism of wingtip vortex wandering based on linear stability analysis[J]. Acta Aeronautica et Astronautica Sinica, 2019, 40(8): 122712 (in Chinese). | |
9 | KALKHORAN I M, SMART M K. Aspects of shock wave-induced vortex breakdown[J]. Progress in Aerospace Sciences, 2000, 36(1): 63-95. |
10 | GERZ T, HOLZÄPFEL F, DARRACQ D. Commercial aircraft wake vortices[J]. Progress in Aerospace Sciences, 2002, 38(3): 181-208. |
11 | NEDUNGADI A, LEWIS M J. Computational study of the flowfields associated with oblique shock/vortex interactions[J]. AIAA Journal, 1996, 34(12): 2545-2553. |
12 | BATCHELOR G K. Axial flow in trailing line vortices[J]. Journal of Fluid Mechanics, 1964, 20(4): 645-658. |
13 | BIRCH D, LEE T, MOKHTARIAN F, et al. Structure and induced drag of a tip vortex[J]. Journal of Aircraft, 2004, 41(5): 1138-1145. |
14 | BENINATI M L, MARSHALL J S. An experimental study of the effect of free-stream turbulence on a trailing vortex[J]. Experiments in Fluids, 2005, 38(2): 244-257. |
15 | RAMAPRIAN B R, ZHENG Y X. Near field of the tip vortex behind an oscillating rectangular wing[J]. AIAA Journal, 1998, 36(7): 1263-1269. |
16 | GROW T L. Effect of a wing on its tip vortex[J]. Journal of Aircraft, 1969, 6(1): 37-41. |
17 | MCALISTER K W, TAKAHASHI R K. NACA 0015 wing pressure and trailing vortex measurements[R]. Washington D.C.: NASA, 1991. |
18 | RAMAPRIAN B R, ZHENG Y X. Measurements in rollup region of the tip vortex from a rectangular wing[J]. AIAA Journal, 1997, 35(12): 1837-1843. |
19 | SKINNER S N, GREEN R B, ZARE-BEHTASH H. Wingtip vortex structure in the near-field of swept-tapered wings[J]. Physics of Fluids, 2020, 32(9): 095102. |
20 | SMART M K, KALKHORAN I M, BENTSON J. Measurements of supersonic wing tip vortices[J]. AIAA Journal, 1995, 33(10): 1761-1768. |
21 | SHEVCHENKO A, KHARITONOV A, SHMAKOV A. Hypersonic vortex wake behind the wing and its interaction with shock waves[C]∥5 th European Conference for Aerospace Sciences, 2013. |
22 | KALKHORAN I M, SMART M K, BETTI A. Interaction of supersonic wing-tip vortices with a normal shock[J]. AIAA Journal, 1996, 34(9): 1855-1861. |
23 | SMART M K, KALKHORAN I M. Effect of shock strength on oblique shock-wave/vortex interaction[J]. AIAA Journal, 1995, 33(11): 2137-2143. |
24 | MAGRI V, KALKHORAN I M. Numerical investigation of oblique shock wave/vortex interaction[J]. Computers & Fluids, 2013, 86: 343-356. |
25 | CATTAFESTA L N, SETTLES G S. Experiments on shock/vortex interactions: AIAA-1992-0315[R]. Reston: AIAA, 1992. |
26 | HIEJIMA T. Criterion for vortex breakdown on shock wave and streamwise vortex interactions[J]. Physical Review E, 2014, 89(5): 053017. |
27 | SMART M K, KALKHORAN I M. Flow model for predicting normal shock wave induced vortex breakdown[J]. AIAA Journal, 1997, 35(10): 1589-1596. |
28 | MAHESH K. A model for the onset of breakdown in an axisymmetric compressible vortex[J]. Physics of Fluids, 1996, 8(12): 3338-3345. |
29 | ERLEBACHER G, HUSSAINI M Y, SHU C W. Interaction of a shock with a longitudinal vortex[J]. Journal of Fluid Mechanics, 1997, 337: 129-153. |
30 | DELERY J, HOROWITZ E, LEUCHTER O, et al. Fundamental studies on vortex flows[J]. Recherche Aerospatiale (English Edition), 1984(2): 1-24. |
31 | GRUHN P, GÜLHAN A. Aerodynamic measurements of an air-breathing hypersonic vehicle at Mach 3.5 to 8[J]. AIAA Journal, 2018, 56(11): 4282-4296. |
32 | 童秉纲, 孔祥言, 邓国华. 气体动力学[M].第 2版. 北京: 高等教育出版社, 2012: 137-143. |
TONG B G, KONG X Y, DENG G H. Gas dynamics[M]. 2nd ed. Beijing: Higher Education Press, 2012: 137-143 (in Chinese). | |
33 | 李祝飞, 高文智, 杨基明. 一种二元进气道起动特性的数值与实验考察[J]. 推进技术, 2016, 37(7): 1224-1232. |
LI Z F, GAO W Z, YANG J M. Numerical and experimental investigation for starting characteristics of a two-dimensional inlet[J]. Journal of Propulsion Technology, 2016, 37(7): 1224-1232 (in Chinese). | |
34 | LI Y M, LI Z F, YANG J M. Tomography-like flow visualization of a hypersonic inward-turning inlet[J]. Chinese Journal of Aeronautics, 2021, 34(1): 44-49. |
35 | BERESH S J, HENFLING J F, SPILLERS R W. Planar velocimetry of a fin trailing vortex in subsonic compressible flow[J]. AIAA Journal, 2009, 47(7): 1730-1740. |
36 | 马印锴, 李祝飞, 杨基明. 高马赫数来流条件下斜激波与流向涡对相互作用[J]. 推进技术, 2022, 43(1): 88-99. |
MA Y K, LI Z F, YANG J M. Oblique shock wave/streamwise-vortex-pair interaction at a high Mach number[J]. Journal of Propulsion Technology, 2022, 43(1): 88-99 (in Chinese). | |
37 | MA Y K, LI Z F, YANG J M. Planar laser scattering visualization of streamwise vortex pairs in a Mach 6 flow[J]. Chinese Journal of Aeronautics, 2023, 36(1): 166-177. |
38 | BIRCH D M. Self-similarity of trailing vortices[J]. Physics of Fluids, 2012, 24(2): 025105. |
39 | WU Z N, XU Y Z, WANG W B, et al. Review of shock wave detection method in CFD post-processing[J]. Chinese Journal of Aeronautics, 2013, 26(3): 501-513. |
[1] | Yining ZHANG, Changxuan WEN, Bo PANG, Tianhao ZHU, Jiaxin HE, Zihan JIN. Optimization of occultation observation configuration based on precise repeat ground-track resonant orbit [J]. Acta Aeronautica et Astronautica Sinica, 2024, 45(8): 329151-329151. |
[2] | Xu ZHAO, Guoyuan QI, Xinchen YU, Jianbing HU, Xia LI. Compensation function observer and its application in flight vehicle attitude control [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2023, 44(9): 327224-327224. |
[3] | Zhongsen WANG, Yuxin LIAO, Caisheng WEI, Ting DAI. Fast terminal sliding mode fault⁃tolerant control of hypersonic vehicle with guaranteed performance [J]. Acta Aeronautica et Astronautica Sinica, 2023, 44(24): 328476-328476. |
[4] | Shusheng CHEN, Zhaokang ZHANG, Jinping LI, Cong FENG, Zhenghong GAO. Wide-speed aerodynamic layout adopting waverider-delta wing [J]. Acta Aeronautica et Astronautica Sinica, 2023, 44(23): 128441-128441. |
[5] | Yu XU, Zhengguang HE, Pengfei XUE, Wanchun CHEN, Feng CHEN. Trajectory design and guidance for high speed flight vehicle based on thermal response characteristics [J]. Acta Aeronautica et Astronautica Sinica, 2023, 44(22): 328553-328553. |
[6] | Yiming WU, Siyi QIU, Yang XIANG, Hong LIU. Mode evolution characteristics of isolated wing tip vortex: Experimental study [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2023, 44(11): 127658-127658. |
[7] | WANG Xinguang, MAO Meiliang, HE Kun, CHEN Qi, WAN Zhao. Application of wall function to supersonic turbulence simulation [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2022, 43(9): 126153-126153. |
[8] | LIU Qiang, TU Guohua, LUO Zhenbing, CHEN Jianqiang, ZHAO Rui, YUAN Xianxu. Progress in hypersonic boundary layer transition delay control [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2022, 43(7): 25357-025357. |
[9] | HU Jiaxin, RUI Shu, GAO Ruichao, GOU Jianjun, GONG Chunlin. Hybrid optimization method for structural layout and size of flight vehicles [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2022, 43(5): 225363-225363. |
[10] | LU Yao. Backstepping control for hypersonic flight vehicles based on tracking differentiator [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2021, 42(11): 524737-524737. |
[11] | LI Guofei, ZHU Guoliang, LYU Jinhu, LIU Kexin, WU Chunfeng. Three-dimensional distributed cooperative guidance law for multiple leader-follower flight vehicles [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2021, 42(11): 524926-524926. |
[12] | CHENG Zepeng, QIU Siyi, XIANG Yang, SHAO Chun, ZHANG Miao, LIU Hong. Evolution mechanism of instability features of wingtip vortex pairs based on bi-global linear stability analysis [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2020, 41(9): 123751-123751. |
[13] | WANG Bo, WU Yanhui. Vortex-dynamics mechanism of tip-region unsteady flow in compressor cascade [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2020, 41(11): 123881-123881. |
[14] | XU Bin, WANG Xia. Time-scale decomposition based intelligent control of flexible hypersonic flight vehicle [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2020, 41(11): 624387-624387. |
[15] | QIU Siyi, CHENG Zepeng, XIANG Yang, LIU Hong. Mechanism of wingtip vortex wandering based on linear stability analysis [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2019, 40(8): 122712-122712. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
Address: No.238, Baiyan Buiding, Beisihuan Zhonglu Road, Haidian District, Beijing, China
Postal code : 100083
E-mail:hkxb@buaa.edu.cn
Total visits: 6658907 Today visits: 1341All copyright © editorial office of Chinese Journal of Aeronautics
All copyright © editorial office of Chinese Journal of Aeronautics
Total visits: 6658907 Today visits: 1341