[1] PARENTEAU M. Aerodynamic optimization of aircraft wings using a coupled VLM-2.5D RANS approach[D]. Montréa:École Polytechnique de Montréal, 2017. [2] PIPERNI P, DEBLOIS A, HENDERSON R. Development of a multilevel multidisciplinary-optimization capability for an industrial environment[J]. AIAA Journal, 2013, 51(10):2335-2352. [3] FRANCIOLINI M, DA RONCH A, DROFELNIK J, et al. Efficient infinite-swept wing solver for steady and unsteady compressible flows[J]. Aerospace Science and Technology, 2018, 72:217-229. [4] 张淼, 刘铁军, 马涂亮, 等. 基于CFD方法的大型客机高速气动设计[J]. 航空学报, 2016, 37(1):244-254. ZHANG M, LIU T J, MA T L,et al. High speed aerodynamic design of large civil transporter based on CFD method[J]. Acta Aeronautica et Astronautica Sinica, 2016, 37(1):244-254(in Chinese). [5] PARENTEAU M, LAURENDEAU É, CARRIER G. Combined high-speed and high-lift wing aerodynamic optimization using a coupled VLM-2.5D RANS approach[J]. Aerospace Science and Technology, 2018, 76:484-496. [6] RIZZI A. Modeling & simulating aircraft stability & control-SimSAC project[C]//AIAA Atmospheric Flight Mechanics Conference. Reston:AIAA, 2010. [7] 陈大伟, 杨国伟. 静气动弹性计算方法研究[J]. 力学学报, 2009, 41(4):469-479. CHEN D W, YANG G W. Static aeroelastic analysis of a flying-wing using different models[J]. Chinese Journal of Theoretical and Applied Mechanics, 2009, 41(4):469-479(in Chinese). [8] 张强, 祝小平, 周洲, 等. 基于CFD/CSD耦合的连结翼静气动弹性计算研究[J]. 西北工业大学学报, 2016, 34(3):437-442. ZHANG Q, ZHU X P, ZHOU Z,et al. Numerical research on static aeroelasticity of joined wing based on CFD/CSD coupling[J]. Journal of Northwestern Polytechnical University, 2016, 34(3):437-442(in Chinese). [9] SANCHEZ R, KLINE H L, THOMAS D, et al. Assessment of the fluid-structure interaction capabilities for aeronautical applications of the open-source solver SU2[C]//Greece:VII European Congress on Computational Methods in Applied Sciences and Engineering, 2016:1498-1529. [10] 孙岩, 黄勇, 王运涛, 等. TRIP软件的静气动弹性计算模块开发及精度验证[J]. 空气动力学学报, 2017, 35(5):620-624. SUN Y, HUANG Y, WANG Y T, et al. Development and precision validation of static aeroelastic computational module on flow solver TRIP[J]. Acta Aerodynamica Sinica, 2017, 35(5):620-624(in Chinese). [11] 王运涛, 孟德虹, 孙岩, 等. 超大规模气动弹性数值模拟软件研制(2017)[J]. 空气动力学学报, 2018, 36(6):1019-1026. WANG Y T, MENG D H, SUN Y, et al. Software development of ultra-scale numericalsimulaiton for aero-elastic problem(2017)[J]. Acta Aerodynamica Sinica, 2018, 36(6):1019-1026(in Chinese). [12] 陈坚强. 国家数值风洞工程(NNW)关键技术研究进展[J/OL]. (2021-04-28)[2021-05-05]. 中国科学:技术科学, https://kns.cnki.net/kcms/detail/11.5844.TH.2021-0428.0914.006.html. CHEN J Q. Advances in the key technologies of Chinese National Numerical Wind Tunnel Project[J/OL]. (2021-04-28)[2021-05-05]. Scientia Sinica Technologica, https://kns.cnki.net/kcms/detail/11.5844.TH.2021-0428.0914.006.html (in Chinese). [13] 孙岩, 江盟, 孟德虹, 等. 国家数值风洞工程结构网格变形程序SGDP V1.0开发与应用[J]. 空气动力学学报, 2020, 38(4):668-676. SUN Y, JIANG M, MENG D H,et al. Development and application of structured grid deformation program SGDP V1.0 in National Numerical Windtunnel Project[J]. Acta Aerodynamica Sinica, 2020, 38(4):668-676(in Chinese). [14] MATTHIES H G, STEINDORF J. Partitioned but strongly coupled iteration schemes for nonlinear fluid-structure interaction[J]. Computers & Structures, 2002, 80(27-30):1991-1999. [15] RENDALL T C S, ALLEN C B. Unified fluid-structure interpolation and mesh motion using radial basis functions[J]. International Journal for Numerical Methods in Engineering, 2008, 74(10):1519-1559. [16] RENDALL T C S, ALLEN C B. Efficient mesh motion using radial basis functions with data reduction algorithms[J]. Journal of Computational Physics, 2009, 228(17):6231-6249. [17] 孙岩, 邓小刚, 王运涛, 等. RBFTFI结构动网格技术在风洞静气动弹性修正中的应用[J]. 工程力学, 2014, 31(10):228-233. SUN Y, DENG X G, WANG Y T, et al. Application of structural dynamic grid method based on RBFTFI on wind tunnel static aero-elastic modification[J]. Engineering Mechanics, 2014, 31(10):228-233(in Chinese). [18] 孙岩, 邓小刚, 王光学, 等. 基于径向基函数改进的Delaunay图映射动网格方法[J]. 航空学报, 2014, 35(3):727-735. SUN Y, DENG X G, WANG G X, et al. Improvement on delaunay graph mapping dynamic grid method based on radial basis functions[J]. Acta Aeronautica et Astronautica Sinica, 2014, 35(3):727-735(in Chinese). [19] 孙岩, 孟德虹, 王运涛, 等. 基于径向基函数与混合背景网格的动态网格变形方法[J]. 航空学报, 2016, 37(5):1462-1472. SUN Y, MENG D H, WANG Y T,et al. Dynamic grid deformation method based on radial basis function and hybrid background grid[J]. Acta Aeronautica et Astronautica Sinica, 2016, 37(5):1462-1472(in Chinese). [20] ALLEN C B, RENDALL T C. Unified approach to CFD-CSD interpolation and mesh motion using radial basis functions:AIAA-2007-3804[R]. Reston:AIAA, 2007. [21] 王运涛, 孟德虹, 孙岩, 等. 带支撑装置的CRM-WBH模型流固耦合数值模拟[J]. 气体物理, 2019, 4(1):16-22. WANG Y T, MENG D H, SUN Y, et al. Fluid-structure-coupling simulation of CRM-WBH model with supportsystem[J]. Physics of Gases, 2019, 4(1):16-22(in Chinese). [22] 王运涛, 孙岩, 孟德虹, 等. 包含支撑装置和机翼变形的CRM-WB构型气动特性数值模拟[J]. 航空学报, 2017, 38(10):121202. WANG Y T, SUN Y, MENG D H,et al. Numerical simulation of aerodynamic characteristics of CRM-WB configuration with support system and wing deformation[J]. Acta Aeronautica et Astronautica Sinica, 2017, 38(10):121202(in Chinese). [23] 张书俊, 王运涛, 孟德虹. 大展弦比联接翼静气动弹性研究[J]. 空气动力学学报, 2013, 31(2):170-174. ZHANG S J, WANG Y T, MENG D H. Study on staticaeroelasticity for high aspect ratio joined-wings[J]. Acta Aerodynamica Sinica, 2013, 31(2):170-174(in Chinese). [24] 余永刚, 周铸, 黄江涛, 等. 单通道客机气动标模CHN-T1设计[J]. 空气动力学学报, 2018, 36(3):505-513. YU Y G, ZHOU Z, HUANG J T, et al. Aerodynamic design of a standard model CHN-T1 for single-aisle passenger aircraft[J]. Acta Aerodynamica Sinica, 2018, 36(3):505-513(in Chinese). [25] 王运涛, 刘刚, 陈作斌. 第一届航空CFD可信度研讨会总结[J]. 空气动力学学报, 2019, 37(2):247-261, 246. WANG Y T, LIU G, CHEN Z B. Summary of the first aeronautical computational fluid dynamics credibility workshop[J]. Acta Aerodynamica Sinica, 2019, 37(2):247-261, 246(in Chinese). |