[1] 荣吉利, 朱宇博, 宋乾强, 等. 异面压缩下六边形铝蜂窝平均塑性坍塌应力研究[J]. 宇航学报, 2018, 39(3):257-263. RONG J L, ZHU Y B, SONG Q Q, et al. Research on the mean plastic crushing stress of hexagonal aluminum honeycombs under out-of-plane compression[J]. Journal of Astronautics, 2018, 39(3):257-263(in Chinese). [2] 罗昌杰, 周安亮, 刘荣强, 等. 金属蜂窝异面压缩下平均压缩应力的理论模型[J]. 机械工程学报, 2010, 46(18):52-59. LUO C J, ZHOU A L, LIU R Q, et al. Average compressive stress constitutive equation of honeycomb metal under out-of-plane compression[J]. Journal of Mechanical Engineering, 2010, 46(18):52-59(in Chinese). [3] BAI Z H, GUO H R, JIANG B H, et al. A study on the mean crushing strength of hexagonal multi-cell thin-walled structures[J]. Thin-Walled Structures, 2014, 80:38-45. [4] QIU N, GAO Y K, FANG J G, et al. Theoretical prediction and optimization of multi-cell hexagonal tubes under axial crashing[J]. Thin-Walled Structures, 2016, 102:111-121. [5] ZHANG X, ZHANG H. Numerical and theoretical studies on energy absorption of three-panel angle elements[J]. International Journal of Impact Engineering, 2012, 46:23-40. [6] CHEN W G, WIERZBICKI T. Relative merits of single-cell, multi-cell and foam-filled thin-walled structures in energy absorption[J]. Thin-Walled Structures, 2001, 39(4):287-306. [7] YAMASHITA M, GOTOH M. Impactbehavior of honeycomb structures with various cell specifications-Numerical simulation and experiment[J]. International Journal of Impact Engineering, 2005, 32(1-4):618-630. [8] 赵辉, 宋扬, 黄江平. 胞元参数对铝蜂窝吸能特性的影响[J]. 机械设计, 2016, 33(9):15-20. ZHAO H, SONG Y, HUANG J P. Influence of cell parameters on aluminum honeycomb's energy absorption characteristics[J]. Journal of Machine Design, 2016, 33(9):15-20(in Chinese). [9] 孙玉瑾, 骆光林. 六边形蜂窝芯材异面冲击性能的有限元研究[J]. 包装工程, 2012, 33(17):60-62, 73. SUN Y J, LUO G L. Finite element analysis of hexagonal honeycomb's out-of-plane impact performance[J]. Packaging Engineering, 2012, 33(17):60-62, 73(in Chinese). [10] 蔡茂, 高群, 宗志坚. 铝合金蜂窝结构轴向压缩吸能特性[J]. 材料科学与工程学报, 2015, 33(5):675-679. CAI M, GAO Q, ZONG Z J. Energy absorption properties of honeycomb structured aluminum under axial compression[J]. Journal of Materials Science and Engineering, 2015, 33(5):675-679(in Chinese). [11] 王中钢, 鲁寨军. 铝蜂窝异面压缩吸能特性实验评估[J]. 中南大学学报(自然科学版), 2013, 44(3):1246-1251. WANG Z G, LU Z J. Experimental assessment on energy absorption property of aluminum honeycomb under out-of-plane compression[J]. Journal of Central South University (Science and Technology), 2013, 44(3):1246-1251(in Chinese). [12] 徐天娇, 金涛, 周志伟, 等. 铝蜂窝面外压缩行为的尺寸效应研究[J]. 科学技术与工程, 2013, 13(14):3829-3833. XU T J, JIN T, ZHOU Z W, et al. Size effects in the out-of-plane mechanical behavior of hexagonal honeycombs[J]. Science Technology and Engineering, 2013, 13(14):3829-3833(in Chinese). [13] 贾培奇, 金涛, 树学峰. 高度方向尺寸对铝蜂窝面外力学性能的影响[J]. 科学技术与工程, 2015, 15(15):132-135, 153. JIA P Q, JIN T, SHU X F. Effects of specimen height on the mechanical behavior of honeycomb in out-of-plane[J]. Science Technology and Engineering, 2015, 15(15):132-135, 153(in Chinese). [14] 欧阳昊, 成伟. 蜂窝铝的侵彻实验研究与有限元模拟[J]. 包装工程, 2015, 36(23):75-77, 93. OUYANG H, CHENG W. Experimental study and finite element simulation on penetration of aluminum honeycomb[J]. Packaging Engineering, 2015, 36(23):75-77, 93(in Chinese). [15] 王永宁, 李大永. 铝蜂窝异面变形的数值模拟[J]. 中国机械工程, 2006, 17(S1):340-343. WANG Y N, LI D Y. Numerical simulations of aluminum honeycomb out-plane deformation[J]. China Mechanical Engineering, 2006, 17(S1):340-343(in Chinese). [16] 车全伟, 姚曙光, 肖娴靓. 蜂窝轴向压缩实验与仿真分析方法研究[J]. 铁道科学与工程学报, 2017, 14(5):1049-1055. CHE Q W, YAO S G, XIAO X L. Study on honeycomb axial compression test and simulation analysis method[J]. Journal of Railway Science and Engineering, 2017, 14(5):1049-1055(in Chinese). [17] 何彬, 李响. 一种新型组合蜂窝的抗冲击性能研究[J]. 机械设计与制造, 2015(6):49-51, 54. HE B, LI X. Research on the impact resistance of a new type of honeycomb structure[J]. Machinery Design & Manufacture, 2015(6):49-51, 54(in Chinese). [18] 王中钢, 姚松. 加筋正六角铝蜂窝异面力学特性与筋胞厚度匹配优化[J]. 航空材料学报, 2013, 33(3):86-91. WANG Z G, YAO S. Out-of-plane mechanical properties and thickness matching optimization between rib and cell thin-wall of reinforced regular hexagon aluminum honeycomb[J]. Journal of Aeronautical Materials, 2013, 33(3):86-91(in Chinese). [19] YANG X F, SUN Y X, YANG J L, et al. Out-of-plane crashworthiness analysis of bio-inspired aluminum honeycomb patterned with horseshoe mesostructure[J]. Thin-Walled Structures, 2018, 125:1-11. [20] YANG X F, MA J X, SUN Y X, et al. Ripplecomb:A novel triangular tube reinforced corrugated honeycomb for energy absorption[J]. Composite Structures, 2018, 202:988-999. [21] 李萌, 刘荣强, 罗昌杰, 等. 铝蜂窝串联缓冲结构静态压缩仿真与试验研究[J]. 振动与冲击, 2013, 32(9):50-56. LI M, LIU R Q, LUO C J, et al. Numerical and experimental analyses on series aluminum honeycomb structures under quasi-static load[J]. Journal of Vibration and Shock, 2013, 32(9):50-56(in Chinese). [22] 谭思博, 侯兵, 李玉龙, 等. 基体材料对铝蜂窝动态强化特性的影响[J]. 爆炸与冲击, 2015, 35(1):16-21. TAN S B, HOU B, LI Y L, et al. Effect of base materials on the dynamic enhancement of aluminium honeycombs[J]. Explosion and Shock Waves, 2015, 35(1):16-21(in Chinese). [23] 胡玲玲, 蒋玲. 胞孔构型对金属蜂窝动态力学性能的影响机理[J]. 爆炸与冲击, 2014, 34(1):41-46. HU L L, JIANG L. Mechanism of cell configuration affecting dynamic mechanical properties of metal honeycombs[J]. Explosion and Shock Waves, 2014, 34(1):41-46(in Chinese). |