[1] SHARAF O Z, ORHAN M F. An overview of fuel cell technology:Fundamentals and applications[J]. Renewable and Sustainable Energy Reviews, 2014, 32:810-853. [2] 黄俊, 杨凤田. 新能源电动飞机发展与挑战[J]. 航空学报, 2016, 37(1):57-68. HUANG J, YANG F T. Development and challenges of electric aircraft with new energies[J]. Acta Aeronautica et Astronautica Sinica, 2016, 37(1):57-68(in Chinese). [3] CHEN J, LIU Z Y, WANG F, et al. Optimal oxygen excess ratio control for PEM fuel cells[J]. IEEE Transactions on Control Systems Technology, 2018, 26(5):1711-1721. [4] 向乾, 张晓辉, 王正平, 等. 适用无人机的小型燃料电池控制方法[J]. 航空学报, 2021, 42(3):92-103. XIANG Q, ZHANG X H, WANG Z P, et al. Control method of small fuel cells for UAVs[J]. Acta Aeronautica et Astronautica Sinica, 2021, 42(3):92-103(in Chinese). [5] LEE B, PARK P, KIM C, et al. Power managements of a hybrid electric propulsion system for UAVs[J]. Journal of Mechanical Science and Technology, 2012, 26(8):2291-2299. [6] GONG A, VERSTRAETE D. Fuel cell propulsion in small fixed-wing unmanned aerial vehicles:Current status and research needs[J]. International Journal of Hydrogen Energy, 2017, 42(33):21311-21333. [7] PUKRUSHPAN J T, STEFANOPOULOU A G, PENG H E. Control of fuel cell breathing[J]. IEEE Control Systems Magazine, 2004, 24(2):30-46. [8] DANZERM A, WILHELM J, ASCHEMANN H, et al. Model-based control of cathode pressure and oxygen excess ratio of a PEM fuel cell system[J]. Journal of Power Sources, 2008, 176(2):515-522. [9] LEI T, YANG Z, LIN Z C, et al. State of art on energy management strategy for hybrid-powered unmanned aerial vehicle[J]. Chinese Journal of Aeronautics, 2019, 32(6):1488-1503. [10] 张晓辉, 刘莉, 戴月领, 等. 燃料电池无人机动力系统方案设计与试验[J]. 航空学报, 2018, 39(8):221874. ZHANG X H, LIU L, DAI Y L, et al. Design and test of propulsion system for fuel cell powered UAVs[J]. Acta Aeronautica et Astronautica Sinica, 2018, 39(8):221874(in Chinese). [11] DENG Z H, CHEN Q H, ZHANG L Y, et al. Data driven NARMAX modeling for PEMFC air compressor[J]. International Journal of Hydrogen Energy, 2020, 45(39):20321-20328. [12] 王云飞. 雷诺数对离心压气机性能影响的研究[D]. 哈尔滨:哈尔滨工业大学, 2012. WANG Y F. Effects of Reynolds number on the performance of centrifugal compressor[D]. Harbin:Harbin Institute of Technology, 2012(in Chinese). [13] LI X, YANG C L, WANG Y Y, et al. Compressor map regression modelling based on partial least squares[J]. Royal Society Open Science, 2018, 5(8):172454. [14] GRAVDAHL J T, EGELAND O, VATLAND S O. Drive torque actuation in active surge control of centrifugal compressors[J]. Automatica, 2002, 38(11):1881-1893. [15] CHU F, WANG F L, WANG X G, et al. Performance modeling of centrifugal compressor using kernel partial least squares[J]. Applied Thermal Engineering, 2012, 44:90-99. [16] PUKRUSHPAN J T, STEFANOPOULOU A G, PENG H. Control of fuel cell power systems:Principles,modeling, analysis and feedback design[M]. Berlin:Springer Science & Business Media, 2014. [17] LI Q, CHEN WR, LIU Z X, et al. Control of proton exchange membrane fuel cell system breathing based on maximum net power control strategy[J]. Journal of Power Sources, 2013, 241:212-218. [18] ZHANG Y, LI F Q, HU X, et al. Fuel cell air supply system control based on oxygen excess ratio[C]//IECON 2019-45th Annual Conference of the IEEE Industrial Electronics Society. Piscataway:IEEE Press, 2019:6394-6397. [19] BAROUD Z, BENMILOUD M, BENALIA A, et al. Novel hybrid fuzzy-PID control scheme for air supply in PEM fuel-cell-based systems[J]. International Journal of Hydrogen Energy, 2017, 42(15):10435-10447. [20] 刘秋秀. 燃料电池空气供给系统的调控策略研究[D]. 成都:电子科技大学, 2020. LIU Q X. Research on control strategy of fuel cell air supply system[D]. Chengdu:University of Electronic Science and Technology of China, 2020(in Chinese). [21] 王帅. 质子交换膜燃料电池供气系统的建模与控制方法研究[D]. 哈尔滨:哈尔滨工业大学, 2019. WANG S. Research on modeling and control of PEM fuel cell air supply system[D]. Harbin:Harbin Institute of Technology, 2019(in Chinese). [22] 李克雷, 李艳昆, 史青, 等. 基于车载燃料电池过氧比的空气流量控制[J]. 可再生能源, 2017, 35(2):304-310. LI K L, LI Y K, SHI Q, et al. Air flow control of vehicle fuel cell based on oxygen excess ratio[J]. Renewable Energy Resources, 2017, 35(2):304-310(in Chinese). [23] 郭爱. 基于过氧比的车载燃料电池系统控制技术[D]. 成都:西南交通大学, 2015. GUO A. Control of fuel cell system for vehicle based on oxygen excess ratio[D]. Chengdu:Southwest Jiaotong University, 2015(in Chinese). [24] ZHANG H K, WANG Y F, WANG D H, et al. Adaptive robust control of oxygen excess ratio for PEMFC system based on type-2 fuzzy logic system[J]. Information Sciences, 2020, 511:1-17. [25] 方思雨. 车用燃料电池空气供给系统控制方法研究[D]. 大连:大连理工大学, 2019. FANG S Y. Research on control method of air supply system for vehicle fuel cells[D]. Dalian:Dalian University of Technology, 2019(in Chinese). [26] GRUBER J K, DOLL M, BORDONS C. Design and experimental validation of a constrained MPC for the air feed of a fuel cell[J]. Control Engineering Practice, 2009, 17(8):874-885. [27] DANZER M A, WILHELM J, ASCHEMANN H, et al. Model-based control of cathode pressure and oxygen excess ratio of a PEM fuel cell system[J]. Journal of Power Sources, 2008, 176(2):515-522. [28] HÄHNEL C, AUL V, HORN J. Power efficient operation of a PEM fuel cell system using cathode pressure and excess ratio by nonlinear model predictive control[C]//2015 European Control Conference (ECC). Piscataway:IEEE Press, 2015:3340-3345. [29] ZHAO D D, HUA Z G, DOU M F, et al. Control oriented modeling and analysis of centrifugal compressor working characteristic at variable altitude[J]. Aerospace Science and Technology, 2018, 72:174-182. [30] MATRAJI I, AHMED F S, LAGHROUCHE S, et al. Extremum seeking control for net power output maximization of a PEM fuel cell using second order sliding mode[C]//2012 12th International Workshop on Variable Structure Systems, 2012:331-336. [31] RAKHTALAS M, NOEI A R, GHADERI R, et al. Control of oxygen excess ratio in a PEM fuel cell system using high-order sliding-mode controller and observer[J]. Turkish Journal of Electrical Engineering & Computer Sciences, 2015, 23:255-278. [32] 李奇, 陈维荣, 贾俊波, 等. 质子交换膜燃料电池动态响应建模与仿真研究[J]. 系统仿真学报, 2009, 21(11):3443-3447. LI Q, CHEN W R, JIA J B, et al. Modeling and dynamic response simulation of fuel cell[J]. Journal of System Simulation, 2009, 21(11):3443-3447(in Chinese). [33] ZHAO D D, XU L C, HUANGFU Y G, et al. Semi-physical modeling and control of a centrifugal compressor for the air feeding of a PEM fuel cell[J]. Energy Conversion and Management, 2017, 154:380-386. [34] PUKRUSHPAN J T, PENGH, STEFANOPOULOU A G. Control-oriented modeling and analysis for automotive fuel cell systems[J]. Journal of Dynamic Systems, Measurement, and Control, 2004, 126(1):14-25. [35] 严慧. 分数阶PIλDμ控制器的设计及数字实现[D]. 南京:南京航空航天大学, 2007. YAN H. Research on design of fractional order PIλDμ controller and its digital implemetation[D]. Nanjing:Nanjing University of Aeronautics and Astronautics, 2007(in Chinese). [36] 史婷娜, 李聪, 姜国凯, 等. 基于无模型预测控制的无刷直流电机换相转矩波动抑制策略[J]. 电工技术学报, 2016, 31(15):54-61. SHI T N, LI C, JIANG G K, et al. Model free predictive control method to suppress commutation torque ripple for brushless DC motor[J]. Transactions of China Electrotechnical Society, 2016, 31(15):54-61(in Chinese). [37] ZHAO D D, WANG X P, TAN B, et al. Fast commutation error compensation for BLDC motors based on virtual neutral voltage[J]. IEEE Transactions on Power Electronics, 2021, 36(2):1259-1263. [38] WANG F X, DAVARI S A, CHEN Z, et al. Finite control set model predictive torque control of induction machine with a robust adaptive observer[J]. IEEE Transactions on Industrial Electronics, 2017, 64(4):2631-2641. [39] DARBA A, DE BELIE F, D'HAESE P, et al. Improved dynamic behavior in BLDC drives using model predictive speed and current control[J]. IEEE Transactions on Industrial Electronics, 2016, 63(2):728-740. [40] XIA K, YE Y H, TIAN Y N, et al. The model predictive control method of torque ripple reduction for BLDC motor[J]. 2018 Asia-Pacific Magnetic Recording Conference (APMRC), 2018:1-2. [41] DE CASTRO A G, PEREIRA W C A, DE ALMEIDA T E P, et al. Improved finite control-set model-based direct power control of BLDC motor with reduced torque ripple[J]. IEEE Transactions on Industry Applications, 2018, 54(5):4476-4484. |