[1] 杨超, 黄超, 吴志刚, 等. 气动伺服弹性研究的进展与挑战[J]. 航空学报, 2015, 36(4):1011-1033. YANG C, HUANG C, WU Z G, et al. Progress and challenges for aeroservoelasticity research[J]. Acta Aeronautica et Astronautica Sinica, 2015, 36(4):1011-1033(in Chinese). [2] 李秋彦, 李刚, 魏洋天, 等. 先进战斗机气动弹性设计综述[J]. 航空学报, 2020, 41(6):523430. LI Q Y, LI G, WEI Y T, et al. Review of aeroelasticity design for advanced fighter[J]. Acta Aeronautica et Astronautica Sinica, 2020, 41(6):523430(in Chinese). [3] TILMANN C P, FLICK P M, MARTIN C A, et al. High-altitude long endurance technologies for sensorcraft[C]//Symposium on Novel and Emerging Vehicle and Vehicle Technology Concepts, 2003:7-11. [4] LOVE M, ZINK P, WIESELMANN P, et al. Body freedom flutter of high aspect ratio flying wings[C]//46th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics and Materials Conference. Reston:AIAA, 2005. [5] SCOTT R, VETTER T, PENNING K, et al. Aeroservoelastic testing of a sidewall mounted free flying wind-tunnel model[C]//26th AIAA Applied Aerodynamics Conference. Reston:AIAA, 2008. [6] NICOLAI L, HUNTEN K, ZINK P S, et al. System benefits of active flutter suppression for a sensorcraft-type vehicle[C]//13th AIAA/ISSMO Multidisciplinary Analysis Optimization Conference. Reston:AIAA, 2010. [7] BURNETT E, ATKINSON C, BERANEK J, et al. Ndof simulation model for flight control development with flight test correlation[C]//AIAA Modeling and Simulation Technologies Conference. Reston:AIAA, 2010. [8] BERANEK J, NICOLAI L, BUONANNO M, et al. Conceptual design of a multi-utility aeroelastic demonstrator[C]//13th AIAA/ISSMO Multidisciplinary Analysis Optimization Conference. Reston:AIAA, 2010. [9] REGAN C D, TAYLOR B R. mAEWing1:Design, build, test-invited[C]//AIAA Atmospheric Flight Mechanics Conference. Reston:AIAA, 2016. [10] GUPTA A, SEILER P J, DANOWSKY B P. Ground vibration tests on a flexible flying wing aircraft-invited[C]//AIAA Atmospheric Flight Mechanics Conference. Reston:AIAA, 2016. [11] KOTIKALPUDI A, PFIFER H, BALAS G J. Unsteady aerodynamics modeling for a flexible unmanned air vehicle[C]//AIAA Atmospheric Flight Mechanics Conference. Reston:AIAA, 2015. [12] SCHMIDT D K, ZHAO W, KAPANIA R K. Flight-dynamics and flutter modeling and analyses of a flexible flying-wing drone-invited[C]//AIAA Atmospheric Flight Mechanics Conference. Reston:AIAA, 2016. [13] DANOWSKY B P, KOTIKALPUDI A, SCHMIDT D K. Flight testing flutter suppression on a small flexible flying-wing aircraft:AIAA-2018-3427[R]. Reston:AIAA, 2018. [14] GU Y S, YANG Z C, MARZOCCA P, et al. Body freedom flutter of a flexible blended wing body like plate-an experimental study[C]//17th International Forum on Aeroelasticity and Structural Dynamics, 2017. [15] 黄超. 柔性飞翼机颤振主动抑制系统建模、设计与验证[D]. 北京:北京航空航天大学,2018. HUANG C. Modeling, design, and verification of active flutter suppression system acting on flexible flying-wing aircraft[D]. Beijing:Beihang University, 2018(in Chinese). [16] HUANG C, WU Z, YANG C, et al. Flutter boundary prediction for a flying-wing model exhibiting body freedom flutter[C]//58th AIAA/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference. Reston:AIAA, 2017. [17] GU Y S, YANG Z C, HE S. Body freedom flutter of a blended wing body model coupled with flight control system[J]. Procedia Engineering, 2015, 99:46-50. [18] 郭洪涛, 陈德华, 吕彬彬, 等. 大展弦比机翼跨声速静气动弹性风洞试验[J].空气动力学学报, 2017,35(6):841-845. GUO H T, CHEN D H, LV B B, et al. Wind tunnel test on transonic static areoelasticity of high-aspect-ratio wing[J]. Acta Aerodynamica Sinica, 2017,35(6):841-845(in Chinese). [19] PEETERS B, VAN DER AUWERAER H, GUILLAUME P, et al. The PolyMAX frequency-domain method:a new standard for modal parameter estimation[J]. Shock and Vibration, 2004, 11(3, 4):395-409. [20] 章卫国, 李爱军, 李广文, 等. 现代飞行控制系统设计[M]. 西安:西北工业大学出版社, 2009. ZHANG W G, LI A J, LI G W, et al. Modern flight control system design[M]. Xi'an:Northwestern Polytechnical University Press, 2009(in Chinese). |