ACTA AERONAUTICAET ASTRONAUTICA SINICA ›› 2020, Vol. 41 ›› Issue (3): 623474-623474.doi: 10.7527/S1000-6893.2019.23474
• Special Column of New Energy Flight Vehicle Technology • Previous Articles Next Articles
LIU Li1, CAO Xiao1, ZHANG Xiaohui2, HE Yuntao1
Received:
2019-09-09
Revised:
2019-12-16
Online:
2020-03-15
Published:
2019-12-13
CLC Number:
LIU Li, CAO Xiao, ZHANG Xiaohui, HE Yuntao. Review of development of light and small scale solar/hydrogen powered unmanned aerial vehicles[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2020, 41(3): 623474-623474.
[1] | HAMAKAWA Y. Solar PV energy conversion and the 21st century's civilization[J]. Solar Energy Materials and Solar Cells, 2002, 74(1-4):13-23. |
[2] | ABBASI T, ABBASI S A. ‘Renewable’ hydrogen:Prospects and challenges[J]. Renewable & Sustainable Energy Reviews, 2011, 15(6):3034-3040. |
[3] | NOTH A. History of solar flight[J]. Autonomous Systems Lab, Switzerland:ETH Zürich, 2008:1-7. |
[4] | NONE. Helios solar/fuel cell aircraft crashes[J]. Fuel Cells Bulletin, 2003(8):0-6. |
[5] | EVANS N D. Military gadgets:How advanced technology is transforming today's battlefield-and tomorrow's[M]. London:FT Press, 2004:140-178. |
[6] | CAI G, DIAS J, SENEVIRATNE L. A Survey of small-scale unmanned aerial vehicles:Recent advances and future development trends[J]. Unmanned Systems, 2014, 2(2):175-199. |
[7] | OETTERSHAGEN P, MELZER A, MANTEL T, et al. A solar-powered hand-launchable uav for low-altitude multi-day continuous flight[C]//2015 IEEE International Conference on Robotics and Automation (ICRA). Piscataway,NJ:IEEE Press, 2015:3986-3993. |
[8] | BRADLEY T, MOFFITT B, MAVRIS D, et al. Applications-transportation|aviation:Fuel cells[J]Encyclopedia of Electrochemical Power Sources, 2009, 98(7):186-192. |
[9] | 曹潇,王正平,贺云涛,等. 低空太阳能无人机研究现状及关键技术研究[J]. 战术导弹技术, 2019, 193(1):64-71. CAO X, WANG Z P, HE Y T,et al. Research status and key technologies of low altitude solar powered UAVs[J]. Tactical Missile Technology,2019,193(1):64-71 (in Chinese). |
[10] | IRVING F,MORGAN D. The feasibility of an aircraft propelled by solar energy[C]//2nd International Symposium on the Technology and Science of Low Speed and Motorless Flight, 1974:1-10. |
[11] | BOUCHER R J. Project sunrise[C]//AIAA/SAE/ASME 15th Jiont Propulsion Conference.Reston,VA:AIAA, 1979:1-6. |
[12] | BOUCHER R. Starduster-A solar powered high altitude airplane[C]//21st Joint Propulsion Conference, 1985:1-9. |
[13] | BOUCHER R J. History of solar flight[C]//20th Joint Propulsion Conference, 1979:1-14. |
[14] | SCHAEPER W. Solar flight of wolfgang schaeper[EB/OL]. (1999-05-30)[2019-09-06]. http://www.mf-gmarkdorf.de/record/index.htm. |
[15] | COCCONI A. AC propulsion's solar electric powered solong UAV[R]. Borrego:AC Propulsion, 2005. |
[16] | COCCONI A. AC propulsion solong UAV flies for 48 hours on sunlight two nights aloft opens new era of sustainable flight[R]. Borrego:AC Propulsion, 2005. |
[17] | ZHU X, ZHENG G, HOU Z. Solar-powered airplanes:A historical perspective and future challenges[J]. Progress in Aerospace Sciences, 2014, 71:36-53. |
[18] | NOTH A. Designing solar airplanes for continuous flight[EB/OL]. (2009-12-20)[2019-09-06]. https://spie.org/news/1649-designing-solar-airplanes-for-continuous-flight?SSO=1. |
[19] | NOTH A, ENGEL M W, SIEGWART R. Flying solo and solar to Mars[J]. Robotics & Automation Magazine IEEE, 2006, 13(3):44-52. |
[20] | NOTH A. Design of solar powered airplanes for continuous flight[D]. Zurich:Eidgenssische Technische Hochschule Zürich, 2008. |
[21] | AeroVironment. AeroVironment solar-powered puma AE small unmanned aircraft achieves continuous flight for more than nine hours[EB/OL]. (2013-08-12)[2019-09-06]. http://www.avinc.com/resources/pr-ess_release/aerovironment-solar-powered-puma-ae-small-unmanned-aircraft-achieves-contin. |
[22] | OETTERSHAGEN P, MELZER A, MANTEL T, et al. Design of small hand-launched solar-powered UAVs:From concept study to a multi-day world endurance record flight[J]. Journal of Field Robotics, 2017, 34(7):1352-1377. |
[23] | OETTERSHAGEN P, MELZER A, MANTEL T, et al. Perpetual flight with a small solar-powered UAV:Flight results, performance analysis and model validation[C]//2016 IEEE Aerospace Conference.Piscataway,NJ:IEEE Press, 2016, 1-8. |
[24] | 李晓阳,赵庸. 太阳能无人驾驶勘测飞机:CN2181477[P]. 1994-11-02. LI X Y,ZHAO Y. Solar unmanned reconnaissance aircraft:CN2181477[P]. 1994-11-02 (in Chinese). |
[25] | 李晓阳. 蓝天任我游-中国"绿色先锋"太阳能无人机技术验证机[J]. 国际航空, 2002(12):38-39. LI X Y. China's green-pionner solar powered UAV[J]. International Aviation, 2002(12):38-39 (in Chinese). |
[26] | 昂海松. 太阳能无人机[J]. 电子产品世界, 2015(8):24-26. ANG H S. Solar powered UAV[J]. Qutlook of Elec tronic Technology, 2015(8):24-26 (in Chinese). |
[27] | 周洲. 太阳能无人机[EB/OL]. (2017-07-26)[2019-09-06]. https://news.nwpu.edu.cn/info/1002/5043-8.htm. ZHOU Z. Solar powered UAV[EB/OL]. (2017-07-26)[2019-09-06]. https://news.nwpu.edu.cn/info/1002/50438.htm (in Chinese). |
[28] | 周洲. 太阳能无人机[EB/OL]. (2019-07-28)[2019-09-06].https://news.nwpu.edu.cn/info/1002/64544. html. ZHOU Z. Solar powered UAV[EB/OL]. (2019-07-28)[2019-09-06].https://news.nwpu.edu.cn/info/1002/64544. html(in Chinese). |
[29] | 刘刚. 考虑局部阴影的太阳能无人机能源管理系统研究[D]. 北京:北京理工大学, 2019. LIU G. Energy management system of solar-powered UAVs under partial shading[D]. Beijing:Beijing Institute of Technology, 2019(in Chinese). |
[30] | 曹潇. 鸭式翼身融合太阳能无人机总体优化设计[D]. 北京:北京理工大学, 2019. CAO X. Conceptual optimization design for canard wing body fusion solar powered UAV[D]. Beijing:Beijing Institute of Technology, 2019(in Chinese). |
[31] | DORNHEIM M. Fuel cells debut[J]. Aviation Week & Space Technology, 2003, 158(22):52. |
[32] | NASA. NASA Armstrong fact sheet:Helios prototy-pe[EB/OL]. (2014-02-28)[2019-09-06]. http://ww-w.nasa.gov/centers/armstrong/news/FactSheets/FS-068-DFRC. html. |
[33] | GONG A, VERSTRAETE D. Fuel cell propulsion in small fixed-wing unmanned aerial vehicles:Current status and research needs[J]. International Journal of Hydrogen Energy, 2017, 42(33):21311-21333. |
[34] | OFOMA U, WU C. Design of a fuel cell powered UAV for environmental research[C]//AIAA 3rd "Unmanned Unlimited" Technical Conference, Workshop and Exhibit.Reston,VA:AIAA, 2004:1-11. |
[35] | HERWERTH C, OFOMA U, WU C, et al. Develop-ment of a fuel cell powered UAV for environmental research[C]//44th AIAA Aerospace Sciences Meeting and Exhibit. Reston,VA:AIAA, 2006:1-14. |
[36] | CHIANG C, HERWERTH C, MITMIRANI M, et al. Systems integration of a hybrid PEM fuel cell/battery powered endurance UAV[C]//46th AIAA Aerospace Sciences Meeting and Exhibit. Reston,VA:AIAA, 2008:1-10. |
[37] | MOFFITT B, BRADLEY T, PAREKH D, et al. Design and performance validation of a fuel cell unmanned aerial vehicle[C]//44th AIAA Aerospace Sciences Meeting and Exhibit. Reston,VA:AIAA, 2006:1-20. |
[38] | BRADLEY T, MOFFITT B, PAREKH D, et al. Flight test results for a fuel cell unmanned aerial vehicle[C]//45th AIAA Aerospace Sciences Meeting and Exhibit. Reston,VA:AIAA, 2007:1-8. |
[39] | BRADLEY T, MOFFITT B, MAVRIS D, et al. Development and experimental characterization of a fuel cell powered aircraft[J]. Journal of Power Sources, 2007, 171(2):793-801. |
[40] | ROESSLER C, SCHOEMANN J, BAIER H. Aerospace application of hydrogen and fuel cells[C]//18th World Hydrogen Conference 2010, Energy & Environment, 2010:400. |
[41] | NONE.AMI, student team set new record fuel-cell aircraft flight[J]. Fuel Cells Bulletin, 2009(1):4. |
[42] | PARSCH A. Naval research lab spider-lion[EB/OL]. (2006-02-07)[2019-09-06]. http://www.designations-ystems.net/dusrm/app4/spider-lion.html. |
[43] | MCCONNELL V P. Military UAVs claiming the skies with fuel cell power[J]. Fuel Cells Bulletin, 2007, 2007(12):12-15. |
[44] | NONE. Protonex-powered NRL UAV achieves flight endurance milestone[J]. Fuel Cells Bulletin, 2009(10):6. |
[45] | BALDIC J, OSENAR P, LAUDER N, et al. Fuel cell systems for long duration electric UAVs and UGVs[J]. Proceedings of SPIE-The International Society for Optical Engineering, 2010, 7707:17. |
[46] | SWIDER-LYONGS K, STROMAN R, PAGE G, et al. Hydrogen fule cell propulsion for long endurance small UAVs[C]//AIAA Centennial of Naval Aviation Forum "100 Years of Achievement and Progress". Reston,VA:AIAA, 1-8. |
[47] | SWIDER-LYONGS K, STROMAN R, PAGE G, et al. The ion tiger fuel cell unmanned air vehicle[C]//Proceedings of the 44th Power Sources Conference, 2010:1-3. |
[48] | NONE. Record flight for UAV using protonex fuel cell system[J]. Fuel Cells Bulletin, 2009(12):4. |
[49] | NONE. NRL completes first flight of ion tiger with custom fuel cell[J]. Fuel Cells Bulletin, 2017(1):5. |
[50] | NONE. Longest flight for small UAV using protonex fuel cell[J]. Fuel Cells Bulletin, 2008(1):5. |
[51] | NONE. Insitu flies hydrogen fuel cell powered scan-eagle UAV[J]. Fuel Cells Bulletin, 2012(5):5. |
[52] | Birdeye-650[EB/OL]. (2009-05-30)[2019-09-06].https://defense-update.com/20100823_birdeye-650le.html. |
[53] | FORD T. Paris air show[J]. Aircraft Engineering and Aerospace Technology, 2003, 59(4):28-30. |
[54] | NONE. BlueBird, horizon unveil first commercial fuel cell UAV[J]. Fuel Cells Bulletin, 2009(10):6. |
[55] | LEE B, PARK P, KIM C, et al. Power managements of a hybrid electric propulsion system for UAVs[J]. Journal of Mechanical Science and Technology, 2012, 26(8):2291-2299. |
[56] | NONE. Protonex first fuel cell order to power flyh2 commercial UAVs[J]. Fuel Cells Bulletin, 2017(7):4. |
[57] | NONE. Lockheed martin ruggedized UAS uses AMI fuel cell power[J]. Fuel Cells Bulletin, 2011(9):4. |
[58] | BREMEN N, FRONTIER O T. Energy or fuel cell powered UAV reaches 10h flight endurance[J]. Fuel Cells Bulletin, 2011(9):4-5. |
[59] | LAPEÑA-REY N, BLANCO J A, FERREYRA E, et al. A fuel cell powered unmanned aerial vehicle for low altitude surveillance missions[J]. International Journal of Hydrogen Energy, 2017, 42(10):6926-6940. |
[60] | NONE. Horizon, bluebird collaborate on fuel cell powered civilian UAV[J]. Fuel Cells Bulletin, 2014(3):3. |
[61] | NONE. H3 unveils dronebox system, HES fuel cell flies UAV for 6h[J]. Fuel Cells Bulletin, 2016(3):15. |
[62] | NONE. Fuel cell/battery hybrid UAV takes off in taiwan[J]. Fuel Cells Bulletin, 2010(6):4-5. |
[63] | 许震宇, 卢强. 燃料电池轻型飞机起飞质量估算方法[J]. 飞机设计, 2011, 31(3):6-8. XU Z Y, LU Q. Estimation method of the take-off weight of fuel cell powered light aircrafts[J]. Aircraft Design,2011,31(3):6-8 (in Chinese). |
[64] | 许震宇, 李斌. 某型燃料电池无人机结构设计[J]. 玻璃钢/复合材料, 2010(6):55-58. XU Z Y, LI B. Structure design of fuel cell powered UAV[J]. Fiber Reinforced Plastics/Composite, 2010(6):55-58(in Chinese). |
[65] | 许震宇. 同济主持研制首架纯燃料电池无人机试飞成功[EB/OL]. (2012-12-19)[2019-09-06]. https://www.tongji.edu.cn/info/1031/3692.htm. XU Z Y. The development of the first fuel cell powered UAV test success by Tongji. (2012-12-19)[2019-09-06]. https://www.tongji.edu.cn/info/1031/3692.htm (in Chinese). |
[66] | 优雷特航空技术. Vtol350[EB/OL]. (2017-06-21)[2019-09-06]. http://www.uniqueuav.com/cpphotoli-st.asp?classid=243. Ulet Aviation Technology. Vtol350[EB/OL]. (2017-06-21)[2019-09-06]. http://www.uniqueuav.com/cpphotoli-st.asp?classid=243 (in Chinese). |
[67] | 刘倩. 燃料电池无人机电堆控制系统研究[D]. 北京:北京理工大学, 2019. LIU Q. Research on fuel cell stack control system of fuel cell powered UAVs[D]. Beijing:Beijing Institute of Technology, 2019(in Chinese). |
[68] | 戴月领. 基于模型预测的燃料电池无人机能源管理策略研究[D]. 北京:北京理工大学, 2019. DAI Y L. Research on energy management strategy of fuel cell UAV based on model prediction[D]. Beijing:Beijing Institute of Technology, 2019(in Chinese). |
[69] | NONE. EnergyOr shows off world's first fuel cell mu-ltirotor UAV[J]. Fuel Cells Bulletin, 2015(4):5-6. |
[70] | 张晓辉. 燃料电池混合动力无人机能源管理研究[D]. 北京:北京理工大学, 2018. ZNANG X H. Energy management of fuel cell hy brid electric UAVs[D]. Beijing:Beijing Institute of Technology, 2018 (in Chinese). |
[71] | NONE. Chinese UAV maker MMC flies hydrogen fuel cell drone for 4h[J]. Fuel Cells Bulletin, 2016(6):4-5. |
[72] | CHEN H, KHALIGH A. Hybrid energy storage system for unmanned aerial vehicle (UAV)[C]//IECON 2010-36th Annual Conference on IEEE In-dustrial Electronics Society.Piscataway,NJ:IEEE Press, 2010:2851-2856. |
[73] | GADALLA M, ZAFAR S. Analysis of a hydrogen fuel cell-PV power system for small UAV[J]. International Journal of Hydrogen Energy, 2016, 41(15):6422-6432. |
[74] | LEE B, KWON S, PARK P, et al. Active power man agement system for an unmanned aerial vehicle powered by solar cells, a fuel cell, and batteries[J]. IEEE Transactions on Aerospace and Electronic Systems, 2014, 50(4):3167-3177. |
[75] | LEE B, PARK P, KIM K, et al. Erratum to "The flight test and power simulations of an UAV powered by solar cells, a fuel cell and batteries"[J]. Journal of Mechanical Science and Technology, 2014, 28(3):1137. |
[76] | GANG B G, KIM H, KWON S. Ground simulation of a hybrid power strategy using fuel cells and solar cells for high-endurance unmanned aerial vehicles[J]. Energy, 2017, 141:1547-1554. |
[77] | GANG B G, KWON S. Design of an energy man agement technique for high endurance unmanned aerial vehicles powered by fuel and solar cell systems[J]. International Journal of Hydrogen Energy, 2018, 43(20):9787-9796. |
[78] | ZHANG X H, LIU L, XU G T. Energy management strategy of hybrid PEMFC-PV-battery propulsion system for low altitude UAVs[C]//52nd AIAA/SAE/ASEE Joint Propulsion Conference.Reston,VA:AIAA,2016:1-15. |
[79] | LI Y P, LIU L, ZHANG X H, et al. Ground tests of hybrid electric power system for UAVs[C]//Applied Mechanics and Materials. Trans Tech Publications. 2014, 448:2326-2334. |
[80] | ZHANG X H, LIU L, DAI Y L, et al. Experimental investigation on the online fuzzy energy management of hybrid fuel cell/battery power system for UAVs[J]. International Journal of Hydrogen Energy, 2018, 43(21):10094-10103. |
[81] | 李延平, 刘莉. 太阳能/氢能混合动力无人机及关键技术[J]. 飞航导弹, 2014(7):39-45. LI Y P, LIU L. Solar/hydrogen hybrid UAV and key technologies[J]. Aerodynamics Missile Journal, 2014(7):39-45 (in Chinese). |
[82] | 杜孟尧. 太阳能/氢能混合动力小型无人机设计及关键技术研究[D]. 北京:北京理工大学, 2015. DU M Y. Design of solar/hydrogen hybrid powered small-scale UAV and research on key techniques[D]. Beijing:Beijing Institute of Technology, 2015(in Chinese). |
[83] | 李延平. 太阳能/氢能混合动力小型无人机总体设计[D]. 北京:北京理工大学, 2014. LI Y P. Conceptual design for solar/hydrogen hy brid powered small-scale UAV[D]. Beijing:Beijing Institute of Technology, 2014(in Chinese). |
[84] | 蔚光辉. 绿色能源小型电动无人机总体设计[D]. 北京:北京理工大学, 2018. YU G H. Conceptual design for green energy electric powered small-scale UAV[D]. Beijing:Beijing Institute of Technology, 2018(in Chinese). |
[85] | PHILLIPS W H. Some design considerations for solar-powered aircraft:NASA-TP-1675[R]. Washington,D.C.:NASA, 1980. |
[86] | MACCREADY P B, LISSAMAN P, MORGAN W, et al. Sun-powered aircraft designs[J]. Journal of Aircraft, 1983, 20(6):487-493. |
[87] | BOUCHER R J. Sunrise, the world's first solar-powered airplane[J]. Journal of Aircraft, 1985, 22(10):840-846. |
[88] | YOUNGBLOOD J W, TALAY T A. Solar-powered airplane design for long-endurance, high-altitude flight[C]//2nd International Very Large Vehicles Conference, 1982, 1-10. |
[89] | YOUNGBLOOD J, TALAY T, PEGG R. Design of long endance unmanned airplanes incorporating solar and fuel cell propulsion[C]//20th Joint Propulsion Conference, 1984:1-11. |
[90] | COLOZZA A. Preliminary design of a long-endurance Mars aircraft[C]//26th Joint Propulsion Conference, 1990:1-11. |
[91] | BRANDT S A, GILLIAM F T. Design analysis meth odology for solar-powered aircraft[J]. Journal of Aircraft, 1995, 32(4):703-709. |
[92] | MORTON S, PAPANIKOLOPOULOS N. Two meter solar UAV:Design approach and performance prediction for autonomous sensing applications[C]//2016 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS).Piscataway,NJ:IEEE Press, 2016:1695-1701. |
[93] | RAJENDRAN P, SMITH H. Development of design methodology for a small solar-powered unmanned aerial vehicle[J]. International Journal of Aerospace Engineering, 2018:1-10. |
[94] | SHIAU J K, MA D M, CHIU C W, et al. Optimalsizing and cruise speed determination for a solar- powered airplane[J], Journal of Aircraft, 2010, 47(2):622-629. |
[95] | LEUTENEGGER S, JABAS M, SIEGWART R Y. Solar air plane conceptual design and performance estimation[J]. Journal of Intelligent & Robotic Systems, 2011, 61(1-4):545-561. |
[96] | MORTON S, SCHARBER L, PAPANIKOLOPOUL O N. Solar powered unmanned aerial vehicle for continuous flight:Conceptual overview and optimization[C]//IEEE International Conference on Robotics & Automation.Piscataway,NJ:IEEE Press, 2013:766-771. |
[97] | MORTON S, D'SA R, PAPANIKOLOPOULOS N. Solar powered UAV:Design and experiments[C]//2015 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS).Piscataway,NJ:IEEE Press, 2015:2460-2466. |
[98] | KOHOUT L, SCHMITZ P. Fuel cell propulsion systems for an all-electric personal air vehicle[C]//AIAA International Air and Space Symposium and Exposition:The Next 100 Years.Reston,VA:AIAA, 2003:1-9. |
[99] | BERTON J J, FREEH J E, WICKENHEISER T J. An analytical performance assessment of a fuel cell-powered, small electric airplane:NASA/TM-2003-212393[R]. Washington,D.C.:NASA, 2003. |
[100] | WENTZ W, MYOSE R, MOHAMED A. Hydrgen-fueled general aviation airplanes[C]//AIAA 5th ATIO and 16th Lighter-Than-Air Sys Tech. and Balloon Systems Conferences. Reston,VA:AIAA,2005:1-14. |
[101] | MOFFITT B A. A methodology for the validated design space exploration of fuel cell powered unmanned aerial vehicles[D]. Atlanta:Georgia Institute of Technology, 2010. |
[102] | CHOI T, SOBAN D, MAVRIS D. Creation of a design framework for all-electric aircraft propulsion architectures[C]//International Energy Conversion Engineering Conference, 2005:1-11. |
[103] | CHIANG C, HERWERTH C, MIRMIRANI M, et al. Systems integration of a hybrid PEM fuel cell/battery powered endurance UAV[C]//46th AIAA Aerospace Sciences Meeting and Exhibit. Reston,VA:AIAA,2008:1-10. |
[104] | SOBAN D, UPTON E. Design of a UAV to optimize use of fuel cell propulsion technology[C]//Infotech@Aerospace, 2005:1-15. |
[105] | BRADLEY T, MOFFITT B, FULLER T, et al. Design studies for hydrogen fuel cell powered un manned aerial vehicles[C]//26th AIAA Applied Aerodynamics Conference. Reston,VA:AIAA,2008:1-16. |
[106] | BRADLEY T H. Modeling, design and energy management of fuel cell systems for aircraft[D]. Atlanta:Georgia Institute of Technology, 2008. |
[107] | BRADLEY T H, MOFFITT B A, FULLER T F, et al. Comparison of design methods for fuel-cell-powered unmanned aerial vehicles[J]. Journal of Aircraft, 2009, 46(6):1945-1956. |
[108] | OH T H. Conceptual design of small unmanned aerial vehicle with proton exchange membrane fuel cell system for long endurance mission[J]. Energy Conversion and Management, 2018, 176:349-356. |
[109] | LEE B, PARK P, KIM K, et al. The flight test and power simulations of an UAV powered by solar cells, a fuel cell and batteries[J]. Journal of Mechanical Science and Technology, 2014, 28(1):399-405. |
[110] | 刘莉, 杜孟尧, 张晓辉,等. 太阳能/氢能无人机总体设计与能源管理策略研究[J]. 航空学报, 2016, 37(1):144-162. LIU L, DU M Y, ZHANG X H, et al.Conceptual design and energy management strategy for UAV with hybrid solar and hydrogen energy[J]. Acta Aeronautica et Astronautica Sinica,2016,37(1):144-162 (in Chinese). |
[111] | 曲鹏, 王寅. 太阳能无人机电源系统的发展现状与展望[J]. 电源技术, 2015(4):864-866. QU P, WANG Y. Development status and prospect of solar power systems for UAVs[J]. Chinese Journal of Power Sources, 2015(4):864-866 (in Chinese). |
[112] | NREL. The best-research cell efficiencies chart[EB/OL]. (2019-11-06)[2019-12-10].https://www.nrel.gov/pv/assets/pdfs/best-research-cell-efficien-cies. |
[113] | CHRISTEN T, CARLEN M W. Theory of Ragone plots[J]. Journal of Power Sources, 2000, 91(2):210-216. |
[114] | 邢雅兰, 王胜彬, 张世超, 等. 锂离子电池新型三维纳米结构负极研究进展[J]. 航空学报, 2014, 35(10):2776-2783. XING Y L, WANG S B, ZHANG S C, et al. Research on new three-dimensional nanostructured anode materials for Lithiumion batteries[J]. Acta Aeronautica et Astronautica Sinica,2014,35(10):2776-2783(in Chinese). |
[115] | BRUCE P G, FREUNBERGER S A, HARDWICK L J, et al. Li-O2 and Li-S batteries with high energy storage[J]. Nature Materials, 2011, 11(1):19-29. |
[116] | MORRISEY B J. Multidisciplinary design optimization of an extreme aspect ratio HALE UAV[D]. San Luis Obispo:California Polytechnic State University, 2009. |
[117] | SHIAU J K, MA D M, YANG P Y, et al. Design of a solar power management system for an experimental UAV[J]. IEEE Transactions on Aerospace and Electronic Systems, 2009, 45(4):1350-1360. |
[118] | ZHU X Z, GUO Z, HOU Z. Solar-powered airplanes:A historical perspective and future challenges[J]. Progress in Aerospace Sciences, 2014, 71:36-53. |
[119] | GAO X Z, HOU Z, GUO Z, et al. Reviews of methods to extract and store energy for solar-powered aircraft[J]. Renewable and Sustainable Energy Reviews, 2015, 44:96-108. |
[120] | GAO X Z, HOU Z X, GUO Z, et al. Energy man agement strategy for solar-powered high-altitude long-endurance aircraft[J]. Energy Conversion and Management, 2013, 70:20-30. |
[121] | ABBE G, SMITH H. Technological development trends in solar-powered aircraft systems[J]. Renewable and Sustainable Energy Reviews, 2016, 60:770-783. |
[122] | BRADLEY T, MOFFITT B, PAREKH D, et al. Energy management for fuel cell powered hybrid-electric aircraft[C]//7th International Energy Conversion Engineering Conference, 2009:1-22. |
[123] | KARUNARATHNE L, ECONOMOU J T, KNOW-LES K. Fuzzy logic control strategy for fuel cell/battery aerospace propulsion system[C]//2008 IEEE Vehicle Power and Propulsion Conference.Piscataway,NJ:IEEE Press, 2008:1-5. |
[124] | KARUNARATHNE L, ECONOMOU J T, KNOWLES K. Intelligent power management (IPM) for transient recognition and control of PEM fuel cell/battery hybrid system[C]//IEEE Vehicle Power and Propulsion Conference.Piscataway,NJ:IEEE Press, 2009:992-997. |
[125] | KARUNARATHNE L, ECONOMOU J T, KNOWLES K. Model based power and energy management system for PEM fuel cell/Li-Ion battery driven propulsion system[C]//5th IET International Conference on Power Electronics, Machines and Drives (PEMD 2010), 2010:1-6. |
[126] | KARUNARATHNE L, ECONOMOU J T, KNOWLES K. Power and energy management system for fuel cell unmanned aerial vehicle[J]. Journal of Aerospace Engineering, 2012, 226(4):437-454. |
[127] | VERSTRAETE D,GONG A,LU D,et al. Experi-mental investigation of the role of the battery in the AeroStack hybrid, fuel-cell-based propulsion system for small unmanned aircraft systems[J]International Journal of Hydrogen Energy, 2015, 40(3):1598-1606. |
[128] | VERSTRAETE D, LEHMKUEHLER K, GONG A, et al. Characterisation of a hybrid, fuel-cell-based propulsion system for small unmanned aircraft[J]. Journal of Power Sources, 2014, 250:204-211. |
[129] | GONG A, PALMER J L, BRIAN G, et al. Performance of a hybrid, fuel-cell-based power system during simulated small unmanned aircraft missions[J]. International Journal of Hydrogen Energy, 2016, 41(26):11418-11426. |
[130] | GONG A, VERSTRAETE D. Fuel cell propulsion in small fixed-wing unmanned aerial vehicles:Current status and research needs[J]. International Journal of Hydrogen Energy, 2017, 42(33):21311-21333. |
[131] | LEI T, YANG Z, LIN Z, et al. State of art on energy management strategy for hybrid-powered unmanned aerial vehicle[J]. Chinese Journal of Aeronautics, 2019, 32(6):1488-1503. |
[132] | CHEN H, KHALIGH A. Hybrid energy storage system for unmanned aerial vehicle (UAV)[C]//IECON 2010-36th Annual Conference on IEEE Industrial Electronics Society.Piscataway,NJ:IEEE Press, 2010:2851-2856. |
[133] | LI Y P, LIU L, MA X, et al. Design of hybrid electric propulsion system for long endurance small UAV[C]//10th International Energy Conversion Engineering Conference, 2012:1-18. |
[134] | KLESH A, KABAMBA P. Energy-optimal path planning for solar-powered aircraft in level flight[C]//AIAA Guidance, Navigation and Control Conference and Exhibit.Restoon,VA:AIAA,2007:1-17. |
[135] | KLESH A, KABAMBA P. Solar-powered aircraft:Energy-optimal path planning and perpetual endurance[J]. Journal of Guidance, Control, and Dynamics, 2009, 32(4):1320-1329. |
[136] | HOSSEINI S, RAN D, MESBAHI M. Optimal path planning and power allocation for a long endurance solar-powered UAV[C]//American Control Conference (ACC), 2013:2588-2593. |
[137] | HOSSEINI S, MESBAHI M. Energy-aware aerial surveillance for a long-endurance solar-powered unmanned aerial vehicles[J]. Journal of Guidance, Control, and Dynamics, 2016, 39(9):1980-1993. |
[138] | GAO X Z, HOU Z X, GUO Z, et al. The equiva lence of gravitational potential and rechargeable battery for high-altitude long-endurance solar-powered aircraft on energy storage[J]. Energy Conversion and Management, 2013, 76:986-995. |
[139] | HUANG Y, WANG H, YAO P. Energy-optimal path planning for Solar-powered UAV with tracking moving ground target[J]. Aerospace Science and Technology, 2016, 53:241-251. |
[140] | HUANG Y, CHEN J, WANG H, et al. A method of 3D path planning for solar-powered UAV with fixed target and solar tracking[J]. Aerospace Science and Technology, 2019, 92:831-838. |
[141] | 马东立, 包文卓, 乔宇航. 基于重力储能的太阳能飞机飞行轨迹研究[J]. 航空学报, 2014,35 (2):408-416. MA D L, BAO W Z, QIAO Y H. Study of flight path for solar-powered aircraft based on gravity energy reservation[J]. Acta Aeronautica et Astronautica Sinica,2014,35(2):408-416 (in Chinese). |
[142] | 王少奇, 马东立, 杨穆清, 等. 高空太阳能无人机三维航迹优化[J]. 北京航空航天大学学报, 2019, 45(5):936-943. WANG S Q, MA D L, YANG M Q,et al. Three-dimensional optimal path planning for high-altitude solar-powered UAV[J]. Journal of Beijing University of Aeronautics and Astron-autics,2019,45(5):936-943(in Chinese). |
[143] | BRADLEY T, MOFFITT B, PAREKH D, et al. Energy management for fuel cell powered hybrid-electric aircraft[C]//7th International Energy Conversion Engineering Conference, 2009:1-22. |
[144] | KARUNARATHNE L, ECONOMOU J T, KNOW LES K. Dynamic control of fuel cell air supply system with power management[C]//2011 19th Mediterranean Conference on Control & Automation (MED). Piscataway,NJ:IEEE Press, 2011:856-861. |
[145] | KARUNARATHNE L, ECONOMOU J T, KNOW LES K. Adaptive neuro fuzzy inference system-based intelligent power management strategies for fuel cell/battery driven unmanned electric aerial vehicle[J]. Proceedings of the Institution of Mechanical Engineers, Part G:Journal of Aerospace Engineering, 2009, 224(1):77-88. |
[146] | KARUNARATHNE L. An intelligent power man agement system for unmanned aerial vehicle propulsion applications[D]. Bedfordshire:Cranfield University, 2012. |
[147] | MOTAPON S N, DESSAINT L A, AL-HADDAD K. A comparative study of energy management schemes for a fuel-cell hybrid emergency power system of more-electric aircraft[J]. IEEE Transactions on Industrial Electronics, 2013, 61(3):1320-1334. |
[148] | MOTAPON S N. Design and simulation of a fuel cell hybrid emergency power system for a more electric aircraft:Evaluation of energy management schemes[D]. Québec:Université Du Québec, 2013. |
[149] | ZHANG X H, LIU L, DAI Y L. Fuzzy state machine energy management strategy for hybrid electric UAVs with PV/fuel cell/battery power system[J]. International Journal of Aerospace Engineering, 2018:1-16. |
[1] | Yulin DING, Zhonghua HAN, Jianling QIAO, Han NIE, Wenping SONG, Bifeng SONG. Research progress in key technologies for conceptual-aerodynamic configuration design of supersonic transport aircraft [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2023, 44(2): 626310-626310. |
[2] | ZHU Bingjie, YANG Xixiang, ZONG Jian'an, DENG Xiaolong. Review of distributed hybrid electric propulsion aircraft technology [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2022, 43(7): 25556-025556. |
[3] | LEI Tao, KONG Delin, WANG Runlong, LI Weilin, ZHANG Xiaobin. Evaluation and optimization method for power systems of distributed electric propulsion aircraft [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2021, 42(6): 624047-624047. |
[4] | FAN Zhouwei, YU Xiongqing, WANG Chao, ZHONG Bowen. Sensitivity analysis of key design parameters of commercial aircraft using deep neural network [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2021, 42(4): 524353-524353. |
[5] | ZHANG Maoquan, CHEN Haixin. Estimated model of range and endurance of small electric UAVs [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2021, 42(3): 625085-625085. |
[6] | LIU Gang, WANG Zhengping, LIU Li, ZHANG Xiaohui, CAO Xiao. Energy control of solar powered UAVs considering partial shading condition [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2020, 41(3): 623178-623178. |
[7] | WU Jianfa, WANG Honglun, HUANG Yu. Research development of solar powered UAV mission planning technology in large-scale time and space spans [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2020, 41(3): 623414-623414. |
[8] | ZHU Lihong, SUN Guorui, HU Wentao, LI Chuan, FU Zengying, YU Zhihang, LIU Zhengxin. Key technology and development trend of energy system in solar powered unmanned aerial vehicles [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2020, 41(3): 623503-623503. |
[9] | ZHONG Weiguo, GUO Youguang, ZHANG Kai. Energy strategy on altitude profile for cycle flight of solar powered aircraft [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2020, 41(3): 623429-623429. |
[10] | MA Dongli, ZHANG Liang, YANG Muqing, XIA Xinglu, WANG Shaoqi. Review of key technologies of ultra-long-endurance solar powered unmanned aerial vehicle [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2020, 41(3): 623418-623418. |
[11] | LEI Tao, MIN Zhihao, FU Hongjie, ZHANG Xingyu, LI Weilin, ZHANG Xiaobin. Dynamic balanced energy management strategies for fuel-cell hybrid power system of unmanned air vehicle [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2020, 41(12): 324048-324048. |
[12] | CHAI Xiao, CHEN Yingchun, TAN Zhaoguang, CHEN Zhenli, SI Jiangtao, LI Jie, ZHANG Binqian. Analysis and optimization of overall parameters for blended-wing-body civil aircraft [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2019, 40(9): 623042-623042. |
[13] | WANG Gang, ZHANG Binqian, ZHANG Minghui, SANG Weimin, YUAN Changsheng, LI Dong. Research progress and prospect for conceptual and aerodynamic technology of blended-wing-body civil aircraft [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2019, 40(9): 623046-623046. |
[14] | ZHANG Xiaohui, LIU Li, DAI Yueling. Coupling effect of energy management and flight state for fuel cell powered UAVs [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2019, 40(7): 222793-222793. |
[15] | CHEN Mingqian. Development and application of the analytic equation of the payload-range diagram for commercial aircraft [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2019, 40(2): 522407-522407. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
Address: No.238, Baiyan Buiding, Beisihuan Zhonglu Road, Haidian District, Beijing, China
Postal code : 100083
E-mail:hkxb@buaa.edu.cn
Total visits: 6658907 Today visits: 1341All copyright © editorial office of Chinese Journal of Aeronautics
All copyright © editorial office of Chinese Journal of Aeronautics
Total visits: 6658907 Today visits: 1341