[1] 杨永健, 张鲁民. 应用重叠网格技术求解复杂组合体无粘流场[J]. 空气动力学报, 1991, 31(1):51-57. YANG Y J, ZHAMG L M. Numerical simulation of inviscid flow over a complicated body using an overlapping grid technique[J]. Acta Aerodynamica Sinica, 1991, 31(1):51-57(in Chinese).
[2] 范晶晶, 阎超, 张辉. 重叠网格洞面优化技术的改进与应用[J]. 航空学报, 2010, 31(6):1127-1133. FAN J J, YAN C, ZHANG H. Improvement of hole-surface optimization technique in overset grids and Its application[J]. Acta Aeronautica et Astronautica Sinica, 2010, 31(6):1127-1133(in Chinese).
[3] 张培红, 王明, 邓有奇, 等. 武器分离及舱门开启过程数值模拟研究[J]. 空气动力学学报, 2013, 31(3):277-281. ZHANG P H, WANG M, DENG Y Q, et al. Numerical simulation of store separation and door operation[J]. Acta Aerodynamica Sinica, 2013, 31(3):277-281(in Chinese).
[4] 肖中云, 江雄, 牟斌, 等. 并行环境下外挂物动态分离过程的数值模拟[J]. 航空学报, 2010, 31(8):1509-1516. XIAO Z Y, JIANG X, MOU B, et al. Numerical simulation of dynamic process of store separation in parallel environment[J]. Acta Aeronautica et Astronautica Sinica, 2010, 31(8):1509-1516(in Chinese).
[5] 刘学强, 伍贻兆, 夏健. 多重网格法在非结构网格中的应用[J]. 计算物理, 2002, 19(4):357-361. LIU X Q, WU Z Y, XIA J. Application of the multigrid method in unstructured meshes[J]. Chinese Journal of Computational Phyfics, 2002, 19(4):357-361(in Chinese).
[6] 李盾, 何跃龙, 纪楚群. 多体分离数值模拟研究与应用[C]//北京力学会第19届学术年会论文集. 北京:北京力学会, 2013:121-122. LI D, HE Y L, JI C Q. Numerical simulation research and application of multi-body separation[C]//The Beijing Society of Theoretical and Applied Mechanics 19th Annual Conference Proceedings. Beijing:The Beijing Society of Theoretical and Applied Mechanics, 2013:121-122(in Chinese).
[7] 何跃龙, 李盾, 刘晓文. 非结构直角网格动网格方法[C]//北京力学会第18届学术年会论文集. 北京:北京力学会, 2012:19-20. HE Y L, LI D, LIU X W. Dynamic unstructured cartesian grid method[C]//The Beijing Society of Theoretical and Applied Mechanics 18th Annual Conference Proceedings. Beijing:The Beijing Society of Theoretical and Applied Mechanics, 2012:19-20(in Chinese).
[8] 刘君, 白晓征, 郭正. 非结构动网格计算方法-及其在包含运动界面的流场模拟中的应用[M]. 长沙:国防科技大学出版社, 2009. LIU J, BAI X Z, GUO Z. Dynamic unstructured grid method and its application in simulation of unsteady flows involving moving boundaries[M]. Changsha:National University of Defense Technology Press, 2009(in Chinese).
[9] BATINA J T. Unsteady euler airfoil solutions using unstructured dynamic meshes[J]. AIAA Journal, 1990, 28(8):1381-1388.
[10] FARHAT C, DEGAND C, KOOBUS B, et al. Torsional springs for two-dimensional dynamic unstructured fluid meshes[J]. Computer Methods in Applied Mechanics and Engineering, 1998, 163(1):231-245.
[11] DEGAND C, FARHAT C. A three-dimensional torsional spring analogy method for unstructured dynamic meshes[J]. Computers & Structures, 2002, 80(3):305-316.
[12] BLOM F J. Considerations on the spring analogy[J]. International Journal for Numerical Methods in Fluids, 2000, 32(6):647-668.
[13] 郭正, 刘君, 瞿章华. 非结构动网格在三维可动边界问题中的应用[J]. 力学学报, 2003, 35(2):140-146. GUO Z, LIU J, QU Z H. Dynamic unstructured grid method with applications to 3D unsteady flows involving moving boundaries[J]. Acta Mechanica Sinica, 2003, 35(2):140-146(in Chinese).
[14] BOTTASSO C L, DETOMI D, SERRA R. The ball-vertex method:A new simple spring analogy method for unstructured dynamic meshes[J]. Computer Methods in Applied Mechanics and Engineering, 2005, 194(39):4244-4264.
[15] ACIKGOZ N, BOTTASSO C L. A unified approach to the deformation of simplicial and non-simplicial meshes in two and three dimensions with guaranteed validity[J]. Computers & Structures, 2007, 85(11):944-954.
[16] TEZDIUAR T E, BEHR M, MITTAL S, et al. Computation of unsteady incompressible flows with the finite element methods:Space-time formulations, iterative strategies and massively parallel implementations[J]. Asme Pressure Vessels Piping Div Publ PVP, 1992, 246(1):7-24.
[17] JOHNSON A A, TEZDUYAR T. Mesh update strategies in parallel finite element computations of flow problems with moving boundaries and interfaces[J]. Computer Methods in Applied Mechanics and Engineering, 1994, 119(1-2):73-94.
[18] JOHNSON A A, TEZDUYAR T E. Advanced mesh generation and update methods for 3D flow simulations[J]. Computational Mechanics, 1999, 23(2):130-143.
[19] STEIN K, TEZDUYAR T, BENNEY R. Mesh moving techniques for fluid-structure interactions with large displacements[J]. Journal of Applied Mechanics, 2003, 70(1):58-63.
[20] STEIN K, TEZDUYAR T E, BENNEY R. Automatic mesh update with the solid-extension mesh moving technique[J]. Computer Methods in Applied Mechanics and Engineering, 2004, 193(21):2019-2032.
[21] CHIANDUSSI G, BUGEDA G, ONATE E. A simple method for automatic update of finite element meshes[J]. Computer Methods in Applied Mechanics and Engineering, 2000, 16(1):1-19.
[22] XU Z, ACCORSI M. Finite element mesh update methods for &uid-structure interaction simulations[J]. Finite Elements in Analysis and Design, 2004, 40(9):1259-1269.
[23] SMITH R W. A PDE-based mesh update method for moving and deforming high reynolds number meshes:AIAA-2011-0472[R]. Reston:AIAA, 2011.
[24] SMITH R W, WRIGHT J A. A Classical elasticity-based mesh update method for moving and deforming meshes:AIAA-2010-0164[R]. Reston:AIAA, 2010.
[25] YANG Z, MAVRIPLIS D J. Unstructured dynamic meshes with higher-order time integration schemes for the unsteady Navier-Stokes equations:AIAA-2005-1222[R]. Reston:AIAA, 2005.
[26] KARMAN S L, ANDERSON W K, SAHASRABUDHE M. Mesh generation using unstructured computational meshes and elliptic partial differential equation smoothing[J]. AIAA Journal, 2006, 44(6):1277-1286.
[27] KENNON S R, MEYERING J M, BERRY C W. Geometry based Delaunay tetrahedralization and mesh movement strategies for multi-body CFD:AIAA-1992-4575[R]. Reston:AIAA, 1992.
[28] 陈炎, 曹树良, 梁开洪, 等. 基于温度体模型的动网格生成方法及在流固耦合振动中的应用[J]. 振动与冲击, 2010, 29(4):1-5. CHEN Y, CAO S L, LIANG K H, et al. A new dynamic grids based on temperature analogy and its application in vibration engineering with fluid-solid interaction[J]. Journal of Vibration and Shock, 2010, 29(4):1-5(in Chinese).
[29] 陈炎, 曹树良, 梁开洪, 等. 温度体动网格模型中控制参数的研究[J]. 计算物理, 2010, 27(3):396-402. CHEN Y, CAO S L, LIANG K H, et al. Parameter control in temperature analogy method[J]. Chinese Journal of Computational Phyfics, 2010, 27(3):396-402(in Chinese).
[30] 陈炎, 张勤昭, 曹树良. 温度体动网格方法的旋转变形能力[J]. 排灌机械工程学报, 2012, 30(4):447-451. CHEN Y, ZHANG Q Z, CAO S L. Rotational deformability of temperature analogy method[J]. Journal of Drainage and Irrigation Machinery Engineering, 2012, 30(4):447-451(in Chinese).
[31] 陈炎, 张勤昭, 曹树良, 等. 基准温度分布动网格生成方法的研究及应用[J]. 北京理工大学学报, 2012, 32(9):900-904. CHEN Y, ZHANG Q Z, CAO S L, et al. A new method of dynamic grid generation based on reference temperature distribution[J]. Transactions of Beijing Institute of Technology, 2012, 32(9):900-904(in Chinese).
[32] THOMPSON J F, WARSI Z U A, MASTIN C W. Numerical grid generation:Foundations and applications[M]. Amsterdam:North-holland, 1985.
[33] LÖHNER R, YANG C. Improved ALE mesh velocities for moving bodies[J]. Communications in Numerical Methods in Engineering, 1996, 12(10):599-608.
[34] LOMTEV I, KIRBY R M, KARNIADAKIS G E. A discontinuous Galerkin ALE method for compressible viscous flows in moving domains[J]. Journal of Computational Physics, 1999, 155(1):128-159.
[35] CALDERER R, MASUD A. A multiscale stabilized ALE formulation for incompressible flows with moving boundaries[J]. Computational Mechanics, 2010, 46(1):185-197.
[36] HUSSAIN M, ABID M, AHMAD M, et al. A parallel implementation of ALE moving mesh technique for FSI problems using openMP[J]. International Journal of Parallel Programming, 2011, 39(6):717-745.
[37] MASUD A, BHANABHAGVANWALA M, KHURRAM R A. An adaptive mesh rezoning scheme for moving boundary flows and fluid-structure interaction[J]. Computers & Fluids, 2007, 36(1):77-91.
[38] MASUD A, HUGHESB T J R. A space-time Galerkin/least-squares finite element formulation of the Navier-Stokes equations for moving domain problems[J]. Computer Methods in Applied Mechanics and Engineering, 1997, 146(1):91-126.
[39] HELENBROOK B T. Mesh deformation using the biharmonic operator[J]. International Journal for Numerical Methods in Engineering, 2003, 56(7):1007-1021.
[40] WANG Q, HU R. Adjoint-based optimal variable stiffness mesh deformation strategy based on bi-elliptics equations[J]. International Journal for Numerical Methods in Engineering, 2012, 90(5):659-670.
[41] YIGIT S, FER M S, HECK M. Grid movement techniques and their influence on laminar fluid-structure interaction computations[J]. Journal of Fluids and Structures, 2008, 24(6):819-832.
[42] ALLEN C B. Parallel flow-solver and mesh motion scheme for forward flight rotor simulation:AIAA-2006-3476[R]. Reston:AIAA, 2006.
[43] LIEFVENDAHL M, TRÖENG C. Deformation and regeneration of the computational grid for CFD with moving boundaries:AIAA-2005-1090[R]. Reston:AIAA, 2005.
[44] PERSSON P O, BONET J, PERAIRE J. Discontinuous Galerkin solution of the Navier-Stokes equations on deformable domains[J]. Computer Methods in Applied Mechanics and Engineering, 2009, 198(17):1585-1595.
[45] SHEPARD D. A two-dimensional interpolation function for irregularly-spaced data[C]//Proceedings of the 196823rd ACM National Conference. New York:ACM, 1968:517-524.
[46] WITTEVEEN J A S. Explicit and robust inverse distance weighting mesh deformation for CFD:AIAA-2010-0165[R]. Reston:AIAA, 2010.
[47] WITTEVEEN J A S, BIJL H. Explicit mesh deformation using inverse distance weighting interpolation:AIAA-2009-3936[R]. Reston:AIAA, 2009.
[48] LUKE E, COLLINS E, BLADES E. A fast mesh deformation method using explicit interpolation[J]. Journal of Computational Physics, 2012, 231(2):586-601.
[49] BUHMANN M. Radial basis functions[M]. Cambridge:Cambridge University Press, 2005.
[50] BOER A D, SCHOOT M S V D, BIJL H. Mesh deformation based on radial basis function interpolation[J]. Computers & Structures, 2007, 85(11):784-795.
[51] RENDALL T C S, ALLEN C B. Efficient mesh motion using radial basis functions with data reduction algorithms[J]. Journal of Computational Physics, 2009, 228(17):6231-6249.
[52] RENDALL T C S, ALLEN C B. Reduced surface point selection options for efficient mesh deformation using radial basis functions[J]. Journal of Computational Physics, 2010, 229(8):2810-2820.
[53] SHENG C, ALLEN C B. Efficient mesh deformation using radial basis functions on unstructured meshes[J]. AIAA Journal, 2013, 51(3):707-720.
[54] BOS F M, OUDHEUSDEN B W, BIJL H. Radial basis function based mesh deformation applied to simulation of flow around flapping wings[J]. Computers & Fluids, 2013, 79(6):167-177.
[55] LIU X, QIN N, XIA H. Fast dynamic grid deformation based on Delaunay graph mapping[J]. Journal of Computational Physics, 2006, 211(2):405-423.
[56] 肖天航, 昂海松, 仝超. 大幅运动复杂构型扑翼动态网格生成的一种新方法[J]. 航空学报, 2008, 29(1):41-48. XIAO T H, ANG H S, TONG C. A new dynamic mesh generation method for large movements of flapping-wings with complex geometries[J]. Acta Aeronautica et Astronautica Sinica, 2008, 29(1):41-48(in Chinese).
[57] 周璇, 李水乡, 陈斌. 非结构动网格生成的弹簧-插值联合方法[J]. 航空学报, 2010, 31(7):1389-1395. ZHOU X, LI S X, CHEN B. Spring-interpolation approach for generating unstructured dynamic meshes[J]. Acta Aeronautica et Astronautica Sinica, 2010, 31(7):1389-1395(in Chinese).
[58] LEFRANÇOIS E. A simple mesh defomation technique for fluid-structure interaction based on a submesh approach[J]. International Journal for Numerical Methods in Engineering, 2008, 75(9):1085-1101.
[59] ALAUZET F D R. A changing-topology moving mesh technique for large displacements[J]. Engineering with Computers, 2014, 30(2):175-200.
[60] OLIVIER G, ALAUZET F. A new changing-topology ALE scheme for moving mesh unsteady simulations:AIAA-2011-0474[R]. Reston:AIAA, 2011.
[61] GUARDONE A, ISOLA D, QUARANTA G. Arbitrary lagrangian eulerian formulation for two-dimensional flows using dynamic meshes with edge swapping[J]. Journal of Computational Physics, 2011, 230(20):7706-7722.
[62] ISOLA D. An interpolation-free two-dimensional conservative ALE scheme over adaptive unstructured grids for rotorcraft aerocraft aerodynamics[D]. Milano:Politecnico Di Milano, 2012.
[63] WANG L, PERSSONY P O. A discontinuous galerkin method for the Navier-Stokes equations on deforming domains using unstructured moving space-time meshes:AIAA-2013-2833[R]. Reston:AIAA, 2013.
[64] GOPALAKRISHNAN P, TAFTI D K. A parallel multiblock boundary fitted dynamic mesh solver for simulating flows with complex boundary movement:AIAA-2008-4142[R]. Reston:AIAA, 2008.
[65] ZHOU X, LI S. A new mesh deformation method based on disk relaxation algorithm with pre-displacement and post-smoothing[J]. Journal of Computational Physics, 2013, 235(2):199-215.
[66] LIU Y, GUO Z, LIU J. RBFs-MSA hybrid method for mesh deformation[J]. Chinese Journal of Aeronautics, 2012, 25(4):500-507.
[67] ANDERSON J M, STREITLIEN K, BARRETT D S, et al. Oscillating foils of high propulsive efficiency[J]. Journal of Fluid Mechanics, 1998, 360(1):41-72.
[68] LIAN Y, SHYY W. Aerodynamics of low reynolds number plunging airfoil under gusty environment:AIAA-2007-0071[R]. Reston:AIAA, 2007.
[69] YOUNG J. Numerical simulation of the unsteady aerodynamics of flapping airfoils[D]. Canberra:University of New South Wales, 2005.
[70] THOMAS P D, LOMBARD C K. The geometric conservation law-a link beween finite-difference and finite-volume methods of flow computation on moving grids:AIAA-1978-1208[R]. Reston:AIAA, 1978.
[71] THOMAS P D, LOMBARD C K. Geometric conservation law and its application to flow computations on moving grids[J]. AIAA Journal, 1979, 17(10):1030-1037.
[72] GUILLARD H, FARHAT C. On the significance of the geometric conservation law for flow computations on moving meshes[J]. Computer Methods in Applied Mechanics and Engineering, 2000, 190(11):1467-1482.
[73] GEUZAINE P, GRANDMONT C, FARHAT C. Design and analysis of ALE schemes with provable second-order time-accuracy for inviscid and viscous flow simulations[J]. Journal of Computational Physics, 2003, 191(1):206-227.
[74] FARHAT C, GEUZAINE P. Design and analysis of robust ALE time-integrators for the solution of unsteady flow problems on moving grids[J]. Computer Methods in Applied Mechanics and Engineering, 2004, 193(39):4073-4095.
[75] MAVRIPLIS D J, YANG Z. Construction of the discrete geometric conservation law for high-order time-accurate simulations on dynamic meshes[J]. Journal of Computational Physics, 2006, 213(2):557-573.
[76] HYUNG T A, YANNIS K. Strong coupled flow/structure interaction with a geometrically conservative ALE scheme on general hybrid meshes[J]. Journal of Computational Physics, 2006, 219(2):671-696.
[77] ZHANG L P, WANG Z J. A block LU-SGS implicit dual time-stepping algorithm for hybrid dynamic meshes[J]. Computers & Fluids, 2004, 33(7):891-916.
[78] KAMAKOTI R, SHYY W. Evaluation of geometric conservation law using pressure-based fluid solver and moving grid technique[J]. International Journal of Numerical Methods for Heat & Fluid Flow, 2004, 14(7):851-865.
[79] BOFFI D, GASTALDI L. Stability and geometric conservation laws for ALE formulations[J]. Computer Methods in Applied Mechanics and Engineering, 2004, 193(42):4717-4739.
[80] MASUD A. Effects of mesh motion on the stability and convergence of ALE based formulations for moving boundary flows[J]. Computational Mechanics, 2006, 38(4-5):430-439.
[81] CHANG X H, MA R, ZHANG L P, et al. Further study on the geometric conservation law for finite volume method on dynamic unstructured mesh[J]. Computers & Fluids, 2015, 120:98-110.
[82] 安效民, 徐敏, 陈士橹. 二阶时间精度的CFD/CSD耦合算法研究[J]. 空气动力学学报, 2009, 27(5):547-552. AN X M, XU M, CHEN S L. Analysis for second order time accurate CFD/CSD coupled algorithms[J]. Acta Aerodynamica Sinica, 2009, 27(5):547-552(in Chinese). |