[1] Tang M, Hamilton B A, Chase R L. The quest for hypersonic flight with air-breathing propulsion, AIAA-2008-2546[R]. Reston: AIAA, 2008.
[2] Balepin V, Engers R, Terry S. MIPCC technology development, AIAA-2003-6929[R]. Reston: AIAA, 2003.
[3] Miyagi H, Miyagawa T, Monji T,et al. Combined cycle engine research in Japanese HYPR project, AIAA-1995-2751[R]. Reston: AIAA, 1995.
[4] Tanatsugu N, Sato T, Balepin V. Development study on ATREX engine[J]. Acta Astronautica, 1997, 41(2-8): 851-862.
[5] Harada K, Tanatsugu N, Sato T. Development study of a precooler for the air-turboramjet expander-cycle engine [J]. Journal of Propulsion and Power, 2001, 17(6): 1233-1238.
[6] Zhang D B. Analysis of Japanese precooling high-speed turbine engines[J]. Aeronautical Information, 2014, 1599(4): 1-4 (in Chinese). 张东宝. 日本预冷却高速涡轮发动机研究取得重要进展[J]. 航空情报, 2014, 1599(4): 1-4.
[7] Sato T, Kobayashi H, Tanatsugu N. Development study of the precooler of ATREX engine, AIAA-2003-6985 [R]. Reston: AIAA, 2003.
[8] Vladimir B. High speed propulsion cycles, RTO-AVT-VKI LS CSP-07-5052[R]. Rhode Saint Genese: VKI, 2007.
[9] Steelant J. Sustained hypersonic flight in Europe: technology drivers for LAPCAT II, AIAA-2009-7240[R]. Reston: AIAA, 2009.
[10] Steelant J. Sustained hypersonic flight in Europe: first technology achievements within LAPCAT II, AIAA-2011-2243[R]. Reston: AIAA, 2011.
[11] Zhang H J, Zou Z P, Li Y, et al. Preconditioned density-based algorithm for conjugate porous/fluid/solid domains[J]. Numerical Heat Transfer Part A, 2011, 60(2): 129-153.
[12] Weiss J M, Smith W A. Preconditioning applied to variable and constant density flows[J]. AIAA Journal, 1995, 33(11): 2050-2057.
[13] Zhang B, Han J L. Multi-field coupled computing platform and thermal transfer of hypersonic thermal protection structures[J]. Acta Aeronautica et Astronautica Sinica, 2011, 32(3): 400-409 (in Chinese). 张兵, 韩景龙. 多场耦合计算平台与高超声速热防护结构传热问题研究[J]. 航空学报, 2011, 32(3): 400-409.
[14] Li H Y, Leong K C, Jin L W, et al. Analysis of fluid flow and heat transfer in a channel with staggered porous blocks[J]. International Journal of Thermal Sciences, 2010, 49(6): 950-962.
[15] Nikitin N V, Pavellev A A. Turbulent flow in a channel with permeable walls, direct numerical simulation and results of three-parameter model[J]. Fluid Dynamics, 1998, 33(6): 826-832.
[16] Zhang H J. Investigation of numerical conjugate heat transfer method and coupling mechanism for hybrid porous/fluid/solid domains[D]. Beijing: Beihang University, 2013 (in Chinese). 张红军. 多孔/流体/固体多区域流热耦合数值模拟方法以及耦合机制研究[D]. 北京: 北京航空航天大学, 2013.
[17] Li Y. A 3-D conjugate heat transfer solver and methodology research[D]. Beijing: Beihang University, 2011 (in Chinese). 李宇. 三维流/热耦合数值模拟程序的发展及方法研究[D]. 北京: 北京航空航天大学, 2011.
[18] Zhang H J, Zou Z P, Song S H, et al. Investigations of heat transfer enhancement in a channel with staggered porous ribs by the preconditioned density-based algorithm[J]. Numerical Heat Transfer Part A, 2015, 67(2): 1370-1385.
[19] Zhang H J, Zou Z P. Investigation of a confined laminar impinging jet on a plate with a porous layer using the preconditioned density-based algorithm[J]. Numerical Heat Transfer Part A, 2012, 61(4): 241-267.
[20] Zhang H J, Zou Z P. Numerical investigation of laminar-plate transpiration cooling by preconditioned density-based algorithm[J]. Numerical Heat Transfer Part A, 2012, 62(10): 761-779. |