1 |
AKBARIZADEH G. A new statistical-based kurtosis wavelet energy feature for texture recognition of SAR images[J]. IEEE Transactions on Geoscience and Remote Sensing, 2012, 50(11): 4358-4368.
|
2 |
TIRANDAZ Z, AKBARIZADEH G. A two-phase algorithm based on kurtosis curvelet energy and unsupervised spectral regression for segmentation of SAR images[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2016, 9(3): 1244-1264.
|
3 |
XING X W, JI K F, ZOU H X, et al. Ship classification in TerraSAR-X images with feature space based sparse representation[J]. IEEE Geoscience and Remote Sensing Letters, 2013, 10(6): 1562-1566.
|
4 |
LIN H P, SONG S L, YANG J A. Ship classification based on MSHOG feature and task-driven dictionary learning with structured incoherent constraints in SAR images[J]. Remote Sensing, 2018, 10(2): 190.
|
5 |
孙秀一, 胡绍海, 马晓乐. 基于无监督深度学习的红外与可见光图像融合[J]. 航空学报, 2022, 43(S1): 726938.
|
|
SUN X Y, HU S H, MA X L. Infrared and visible image fusion based on unsupervised deep learning[J]. Acta Aeronautica et Astronautica Sinica, 2022, 43(S1): 726938 (in Chinese).
|
6 |
李红光, 于若男, 丁文锐. 基于深度学习的小目标检测研究进展[J]. 航空学报, 2021, 42(7): 024691.
|
|
LI H G, YU R N, DING W R. Research development of small object traching based on deep learning[J]. Acta Aeronautica et Astronautica Sinica, 2021, 42(7): 024691 (in Chinese).
|
7 |
ZHANG T W, ZHANG X L, KE X, et al. HOG-ShipCLSNet: A novel deep learning network with HOG feature fusion for SAR ship classification[J]. IEEE Transactions on Geoscience and Remote Sensing, 2022, 60: 1-22.
|
8 |
HE J L, CHANG W L, WANG F P, et al. Group bilinear CNNs for dual-polarized SAR ship classification[J]. IEEE Geoscience and Remote Sensing Letters, 2022, 19: 1-5.
|
9 |
ZHENG H, HU Z G, LIU J J, et al. MetaBoost: A novel heterogeneous DCNNs ensemble network with two-stage filtration for SAR ship classification[J]. IEEE Geoscience and Remote Sensing Letters, 2022, 19: 1-5.
|
10 |
SALERNO E. Using low-resolution SAR scattering features for ship classification[J]. IEEE Geoscience and Remote Sensing Letters, 2022, 19: 1-4.
|
11 |
ZHANG T W, ZHANG X L. Squeeze-and-excitation Laplacian pyramid network with dual-polarization feature fusion for ship classification in SAR images[J]. IEEE Geoscience and Remote Sensing Letters, 2022, 19: 1-5.
|
12 |
XIONG W, XIONG Z Y, ZHANG Y, et al. A deep cross-modality hashing network for SAR and optical remote sensing images retrieval[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2020, 13: 5284-5296.
|
13 |
SUN Y X, FENG S S, YE Y M, et al. Multisensor fusion and explicit semantic preserving-based deep hashing for cross-modal remote sensing image retrieval[J]. IEEE Transactions on Geoscience and Remote Sensing, 2022, 60: 1-14.
|
14 |
LANG H T, WU S W, XU Y J. Ship classification in SAR images improved by AIS knowledge transfer[J]. IEEE Geoscience and Remote Sensing Letters, 2018, 15(3): 439-443.
|
15 |
LANG H T, YANG G A, LI C N, et al. Multisource heterogeneous transfer learning via feature augmentation for ship classification in SAR imagery[J]. IEEE Transactions on Geoscience and Remote Sensing, 2022, 60: 1-14.
|
16 |
HOU X Y, AO W, SONG Q, et al. FUSAR-Ship: Building a high-resolution SAR-AIS matchup dataset of Gaofen-3 for ship detection and recognition[J]. Science China Information Sciences, 2020, 63(4): 140303.
|
17 |
ZHAN J, ZHANG T F, YU Y. Multi-source heterogeneous data aggregation method based on adversarial domain adaptation[C]∥ 2021 China Automation Congress (CAC). Piscataway: IEEE Press, 2022: 4856-4861.
|
18 |
RODGER M, GUIDA R. Classification-aided SAR and AIS data fusion for space-based maritime surveillance[J]. Remote Sensing, 2020, 13(1): 104.
|
19 |
SIMONYAN K, ZISSERMAN A. Very deep convolutional networks for large-scale image recognition[J]. 3rd International Conference on Learning Representations, ICLR 2015 - Conference Track Proceedings, 2015.
|
20 |
HE K M, ZHANG X Y, REN S Q, et al. Deep residual learning for image recognition[C]∥ 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Piscataway: IEEE Press, 2016: 770-778.
|
21 |
HUANG L Q, LIU B, LI B Y, et al. OpenSARShip: A dataset dedicated to sentinel-1 ship interpretation[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2018, 11(1): 195-208.
|
22 |
MAATEN L, HINTON G. Visualizing data using t-SNE[J]. Journal of Machine Learning Research, 2008, 9(8): 2579–2605.
|
23 |
HOFFMAN J, RODNER E, DONAHUE J, et al. Efficient learning of domain-invariant image representations[DB/OL]. arXiv preprint: 1301.3224, 2013.
|
24 |
LI W, DUAN L X, XU D, et al. Learning with augmented features for supervised and semi-supervised heterogeneous domain adaptation[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2014, 36(6): 1134-1148.
|
25 |
TSAI Y H H, YEH Y R, WANG Y C F. Learning cross-domain landmarks for heterogeneous domain adaptation[C]∥ 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Piscataway: IEEE Press, 2016: 5081-5090.
|
26 |
WANG C, MAHADEVAN S. Heterogeneous domain adaptation using manifold alignment[C]∥ Proceedings of the Twenty-Second International Joint Conference on Artificial Intelligence. New York: ACM, 2011: 1541-1546.
|
27 |
ESKANDAR G, MARSDEN R A, PANDIYAN P, et al. An unsupervised domain adaptive approach for multimodal 2D object detection in adverse weather conditions[C]∥ 2022 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). Piscataway: IEEE Press, 2022: 10865-10872.
|