1 |
李志亮, 李小将, 王志恒. 敏捷卫星任务规划问题研究现状与展望[J]. 装备学院学报, 2016, 27(1): 69-75.
|
|
LI Z L, LI X J, WANG Z H. Current status and prospect of agile satellite mission planning[J]. Journal of Equipment Academy, 2016, 27(1): 69-75 (in Chinese).
|
2 |
WANG X W, WU G H, XING L N, et al. Agile earth observation satellite scheduling over 20 years: Formulations, methods, and future directions[J]. IEEE Systems Journal, 2021, 15(3): 3881-3892.
|
3 |
谢平, 杜永浩, 姚锋, 等. 敏捷成像卫星自主调度技术综述[J]. 宇航学报, 2019, 40(2): 127-138.
|
|
XIE P, DU Y H, YAO F, et al. Literature review for autonomous scheduling technology of agile earth observation satellites[J]. Journal of Astronautics, 2019, 40(2): 127-138 (in Chinese).
|
4 |
LEMAI^TRE M, VERFAILLIE G, JOUHAUD F, et al. Selecting and scheduling observations of agile satellites[J]. Aerospace Science and Technology, 2002, 6(5): 367-381.
|
5 |
VASQUEZ M, HAO J K. A “logic-constrained” knapsack formulation and a tabu algorithm for the daily photograph scheduling of an earth observation satellite[J]. Computational Optimization and Applications, 2001, 20(2): 137-157.
|
6 |
LIN W C, LIAO D Y, LIU C Y, et al. Daily imaging scheduling of an earth observation satellite[J]. IEEE Transactions on Systems, Man, and Cybernetics - Part A: Systems and Humans, 2005, 35(2): 213-223.
|
7 |
CHU X G, CHEN Y N, TAN Y J. An anytime branch and bound algorithm for agile earth observation satellite onboard scheduling[J]. Advances in Space Research, 2017, 60(9): 2077-2090.
|
8 |
WANG X W, CHEN Z, HAN C. Scheduling for single agile satellite, redundant targets problem using complex networks theory[J]. Chaos, Solitons & Fractals, 2016, 83: 125-132.
|
9 |
WANG X W, HAN C, ZHANG R, et al. Scheduling multiple agile earth observation satellites for oversubscribed targets using complex networks theory[J]. IEEE Access, 2019, 7: 110605-110615.
|
10 |
赵琳, 王硕, 郝勇, 等. 基于能量最优的敏捷遥感卫星在轨任务规划[J]. 航空学报, 2017, 38(6): 320654.
|
|
ZHAO L, WANG S, HAO Y, et al. Energy-optimal in orbit mission planning for agile remote sensing satellites[J]. Acta Aeronautica et Astronautica Sinica, 2017, 38(6): 320654 (in Chinese).
|
11 |
伍国华, 杜潇, 王心慰, 等. 考虑邻域结构动态调整的多星应急调度算法[J]. 控制与决策, 2022, 37(7): 1685-1694.
|
|
WU G H, DU X, WANG X W, et al. Multi-satellite emergency scheduling algorithm considering dynamic selection of neighborhood structure[J]. Control and Decision, 2022, 37(7): 1685-1694 (in Chinese).
|
12 |
李志亮, 李小将, 孙伟. 考虑成像质量的敏捷卫星任务调度模型与算法[J]. 宇航学报, 2017, 38(6): 590-597.
|
|
LI Z L, LI X J, SUN W. Task scheduling model and algorithm for agile satellite considering imaging quality[J]. Journal of Astronautics, 2017, 38(6): 590-597 (in Chinese).
|
13 |
邱涤珊, 郭浩, 贺川, 等. 敏捷成像卫星多星密集任务调度方法[J]. 航空学报, 2013, 34(4): 882-889.
|
|
QIU D S, GUO H, HE C, et al. Intensive task scheduling method for multi-agile imaging satellites[J]. Acta Aeronautica et Astronautica Sinica, 2013, 34(4): 882-889 (in Chinese).
|
14 |
王海蛟, 贺欢, 杨震. 敏捷成像卫星调度的改进量子遗传算法[J]. 宇航学报, 2018, 39(11): 1266-1274.
|
|
WANG H J, HE H, YANG Z. Scheduling of agile satellites based on an improved quantum genetic algorithm[J]. Journal of Astronautics, 2018, 39(11): 1266-1274 (in Chinese).
|
15 |
LIU X L, LAPORTE G, CHEN Y W, et al. An adaptive large neighborhood search metaheuristic for agile satellite scheduling with time-dependent transition time[J]. Computers & Operations Research, 2017, 86: 41-53.
|
16 |
HE L, LIU X L, LAPORTE G, et al. An improved adaptive large neighborhood search algorithm for multiple agile satellites scheduling[J]. Computers & Operations Research, 2018, 100: 12-25.
|
17 |
WEI L N, XING L N, WAN Q, et al. A multi-objective memetic approach for time-dependent agile earth observation satellite scheduling problem[J]. Computers & Industrial Engineering, 2021, 159: 107530.
|
18 |
PENG G S, SONG G P, HE Y M, et al. Solving the agile earth observation satellite scheduling problem with time-dependent transition times[J]. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 2022, 52(3): 1614-1625.
|
19 |
AICKELIN U, BURKE E K, LI J P. An evolutionary squeaky wheel optimization approach to personnel scheduling[J]. IEEE Transactions on Evolutionary Computation, 2009, 13(2): 433-443.
|
20 |
LI J P, PARKES A J, BURKE E K. Evolutionary squeaky wheel optimization: A new framework for analysis[J]. Evolutionary Computation, 2011, 19(3): 405-428.
|
21 |
王东兴, 宋雪雁, 孙济洲. 航班着陆调度的多目标优化研究[J]. 计算机应用与软件, 2015, 32(2): 224-227.
|
|
WANG D X, SONG X Y, SUN J Z. On multi-objective optimisation algorithm for flight landing scheduling[J]. Computer Applications and Software, 2015, 32(2): 224-227 (in Chinese).
|
22 |
JOSLIN D E, CLEMENTS D P. “Squeaky wheel” optimization[C]∥ Proceedings of the Fifteenth National/Tenth Conference on Artificial Intelligence/Innovative Applications of Artificial Intelligence. New York: ACM, 1998: 340⁃346.
|
23 |
BURKE E K, HYDE M R, KENDALL G. A squeaky wheel optimisation methodology for two-dimensional strip packing[J]. Computers & Operations Research, 2011, 38(7): 1035-1044.
|
24 |
经飞, 王钧, 李军, 等. 基于吱呀轮优化的多卫星数传调度问题求解方法[J]. 宇航学报, 2011, 32(4): 863-870.
|
|
JING F, WANG J, LI J, et al. A new scheduling method for multi-satellite data transmission based on squeaky-wheel optimization[J]. Journal of Astronautics, 2011, 32(4): 863-870 (in Chinese).
|
25 |
UMANG N, BIERLAIRE M, VACCA I. Exact and heuristic methods to solve the berth allocation problem in bulk ports[J]. Transportation Research Part E: Logistics and Transportation Review, 2013, 54: 14-31.
|
26 |
LYU X H, NEGENBORN R R, SHI X N, et al. A collaborative berth planning approach for disruption recovery[J]. IEEE Open Journal of Intelligent Transportation Systems, 2022, 3: 153-164.
|
27 |
HOARE C A R. Quicksort[J]. The Computer Journal, 1962, 5(1): 10-16.
|
28 |
SUN H Q, XIA W, HU X X, et al. Earth observation satellite scheduling for emergency tasks[J]. Journal of Systems Engineering and Electronics, 2019, 30(5): 931-945.
|