ACTA AERONAUTICAET ASTRONAUTICA SINICA ›› 2023, Vol. 44 ›› Issue (7): 327105-327105.doi: 10.7527/S1000-6893.2022.27105
• Electronics and Electrical Engineering and Control • Previous Articles Next Articles
Ding WANG1,2, Jiexin YIN1,2(), Xinguang ZHANG3, Na’e ZHENG4
Received:
2022-03-04
Revised:
2022-03-28
Accepted:
2022-05-30
Online:
2023-04-15
Published:
2022-05-09
Contact:
Jiexin YIN
E-mail:Cindyin0807@163.com
Supported by:
CLC Number:
Ding WANG, Jiexin YIN, Xinguang ZHANG, Na’e ZHENG. A TDOA/FDOA cooperative localization method for multiple disjoint sources based on weighted multidimensional scaling analysis[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2023, 44(7): 327105-327105.
Table B1
Computational complexity of proposed method
步骤 | 各步骤计算量 | 总计算量 |
---|---|---|
步骤a-1 | ||
步骤a-2 | ||
步骤a-3 | ||
步骤a-4 | ||
步骤a-5 | ||
步骤a-6 | ||
步骤a-7 | ||
步骤a-8 | ||
步骤b-1 | ||
步骤b-2 | ||
步骤b-3 | ||
步骤b-4 |
1 | LIU Y N, NIU H Q, LI Z L. A multi-task learning convolutional neural network for source localization in deep ocean[J]. The Journal of the Acoustical Society of America, 2020, 148(2): 873. |
2 | MA F H, LIU Z M, YANG L, et al. Source localization in large-scale asynchronous sensor networks[J]. Digital Signal Processing, 2021, 109: 102920. |
3 | HE J, LI L N, SHU T, et al. Mixed near-field and far-field source localization based on exact spatial propagation geometry[J]. IEEE Transactions on Vehicular Technology, 2021, 70(4): 3540-3551. |
4 | LIU Y, GUO F C, YANG L, et al. An improved algebraic solution for TDOA localization with sensor position errors[J]. IEEE Communications Letters, 2015, 19(12): 2218-2221. |
5 | DAI Z C, WANG G, JIN X P, et al. Nearly optimal sensor selection for TDOA-based source localization in wireless sensor networks[J]. IEEE Transactions on Vehicular Technology, 2020, 69(10): 12031-12042. |
6 | ZHANG L, ZHANG T, SHIN H S. An efficient constrained weighted least squares method with bias reduction for TDOA-based localization[J]. IEEE Sensors Journal, 2021, 21(8): 10122-10131. |
7 | YEREDOR A, ANGEL E. Joint TDOA and FDOA estimation: A conditional bound and its use for optimally weighted localization[J]. IEEE Transactions on Signal Processing, 2011, 59(4): 1612-1623. |
8 | LIU Z X, WANG R, ZHAO Y J. Computationally efficient TDOA and FDOA estimation algorithm in passive emitter localisation[J]. IET Radar, Sonar & Navigation, 2019, 13(10): 1731-1740. |
9 | FOY W H. Position-location solutions by Taylor-series estimation[J]. IEEE Transactions on Aerospace and Electronic Systems, 1976, AES-12(2): 187-194. |
10 | WANG Y L, WU Y. An efficient semidefinite relaxation algorithm for moving source localization using TDOA and FDOA measurements[J]. IEEE Communications Letters, 2017, 21(1): 80-83. |
11 | YU H G, HUANG G M, GAO J, et al. An efficient constrained weighted least squares algorithm for moving source location using TDOA and FDOA measurements[J]. IEEE Transactions on Wireless Communications, 2012, 11(1): 44-47. |
12 | 周恭谦, 杨露菁, 刘忠. 改进的非完全约束加权最小二乘TDOA/FDOA无源定位方法[J]. 系统工程与电子技术, 2018, 40(8): 1686-1692. |
ZHOU G Q, YANG L J, LIU Z. Improved incomplete constrained weighted least squares TDOA/FDOA passive location method[J]. Systems Engineering and Electronics, 2018, 40(8): 1686-1692 (in Chinese). | |
13 | QU X M, XIE L H, TAN W R. Iterative constrained weighted least squares source localization using TDOA and FDOA measurements[J]. IEEE Transactions on Signal Processing, 2017, 65(15): 3990-4003. |
14 | LIU C F, YUN J W. A joint TDOA/FDOA localization algorithm using Bi-iterative method with optimal step length[J]. Chinese Journal of Electronics, 2021, 30(1): 119-126. |
15 | HO K C, XU W W. An accurate algebraic solution for moving source location using TDOA and FDOA measurements[J]. IEEE Transactions on Signal Processing, 2004, 52(9): 2453-2463. |
16 | NOROOZI A, OVEIS A H, HOSSEINI S M, et al. Improved algebraic solution for source localization from TDOA and FDOA measurements[J]. IEEE Wireless Communications Letters, 2018, 7(3): 352-355. |
17 | SONG H B, WEN G J, ZHU L X, et al. A novel TSWLS method for moving target localization in distributed MIMO radar systems[J]. IEEE Communications Letters, 2019, 23(12): 2210-2214. |
18 | CHEN Z X, WEI H W, WAN Q, et al. A supplement to multidimensional scaling framework for mobile location: A unified view[J]. IEEE Transactions on Signal Processing, 2009, 57(5): 2030-2034. |
19 | WANG Y L, WU Y, YI S C, et al. Complex multidimensional scaling algorithm for time-of-arrival-based mobile location: A unified framework[J]. Circuits, Systems, and Signal Processing, 2017, 36(4): 1754-1768. |
20 | WEI H W, LU P Z. On optimality of weighted multidimensional scaling for range-based localization[J]. IEEE Transactions on Signal Processing, 2020, 68: 2105-2113. |
21 | 李万春. 加权多维标量的接收信号强度定位方法[J]. 信号处理, 2013, 29(12): 1713-1717. |
LI W C. Novel weighted multidimensional scaling method for received signal strength based source location[J]. Journal of Signal Processing, 2013, 29(12): 1713-1717 (in Chinese). | |
22 | CHAN F K W, SO H C. Efficient weighted multidimensional scaling for wireless sensor network localization[J]. IEEE Transactions on Signal Processing, 2009, 57(11): 4548-4553. |
23 | LIN L X, SO H C, CHAN F K W. Multidimensional scaling approach for node localization using received signal strength measurements[J]. Digital Signal Processing, 2014, 34: 39-47. |
24 | WEI H W, WAN Q, CHEN Z X, et al. Multidimensional scaling-based passive emitter localisation from range-difference measurements[J]. IET Signal Processing, 2008, 2(4): 415. |
25 | WEI H W, PENG R, WAN Q, et al. Multidimensional scaling analysis for passive moving target localization with TDOA and FDOA measurements[J]. IEEE Transactions on Signal Processing, 2010, 58(3): 1677-1688. |
26 | HO K C, LU X N, KOVAVISARUCH L. Source localization using TDOA and FDOA measurements in the presence of receiver location errors: Analysis and solution[J]. IEEE Transactions on Signal Processing, 2007, 55(2): 684-696. |
27 | SUN X Y, LI J D, HUANG P Y, et al. Total least-squares solution of active target localization using TDOA and FDOA measurements in WSN[C]∥22nd International Conference on Advanced Information Networking and Applications-Workshops (aina workshops 2008). Piscataway: IEEE Press, 2008: 995-999. |
28 | YU H, GAO J, HUANG G. Constrained total least-squares localisation algorithm using time difference of arrival and frequency difference of arrival measurements with sensor location uncertainties[J]. IET Radar, Sonar & Navigation, 2012, 6(9): 891-899. |
29 | 曲付勇, 孟祥伟. 基于约束总体最小二乘方法的到达时差到达频差无源定位算法[J]. 电子与信息学报, 2014, 36(5): 1075-1081. |
QU F Y, MENG X W. Source localization using TDOA and FDOA measurements based on constrained total least squares algorithm[J]. Journal of Electronics & Information Technology, 2014, 36(5): 1075-1081 (in Chinese). | |
30 | 曹景敏, 万群, 欧阳鑫信, 等. 观测站有位置误差的多维标度时频差定位算法[J]. 信号处理, 2017, 33(1): 1-9. |
CAO J M, WAN Q, OUYANG X X, et al. Multidimensional scaling-based passive emitter localization from time difference of arrival and frequency difference of arrival measurements with sensor location uncertainties[J]. Journal of Signal Processing, 2017, 33(1): 1-9 (in Chinese). | |
31 | LIU Z X, HU D X, ZHAO Y S, et al. An algebraic method for moving source localization using TDOA, FDOA, and differential Doppler rate measurements with receiver location errors[J]. EURASIP Journal on Advances in Signal Processing, 2019, 2019: 1-15. |
32 | LU X N, HO K C. Taylor-series technique for moving source localization in the presence of sensor location errors[C]∥2006 IEEE International Symposium on Circuits and Systems. Piscataway: IEEE Press, 2006: 1075-1078. |
33 | WU H, SU W M, GU H. A novel Taylor series method for source and receiver localization using TDOA and FDOA measurements with uncertain receiver positions[C]∥Proceedings of 2011 IEEE CIE International Conference on Radar. Piscataway: IEEE Press, 2011: 1037-1040. |
34 | SUN M, HO K C. An asymptotically efficient estimator for TDOA and FDOA positioning of multiple disjoint sources in the presence of sensor location uncertainties[J]. IEEE Transactions on Signal Processing, 2011, 59(7): 3434-3440. |
35 | HAO B J, LI Z, SI J B, et al. Joint source localisation and sensor refinement using time differences of arrival and frequency differences of arrival[J]. IET Signal Processing, 2014, 8(6): 588-600. |
36 | GAO L Y, LIU M Z, YUE J Y, et al. Source number estimation based on improved singular value decomposition at low SNR[C]∥2019 IEEE 9th International Conference on Electronics Information and Emergency Communication. Piscataway: IEEE Press, 2019: 1-4. |
37 | 麻凯利, 王川川. 基于深度学习的信源数估计方法[J]. 航天电子对抗, 2019, 35(3): 7-11. |
MA K L, WANG C C. Source number estimation method based on deep learning[J]. Aerospace Electronic Warfare, 2019, 35(3): 7-11 (in Chinese). | |
38 | ICHIGE K, HAMADA S, KASHIWAGI K, et al. Robust source number estimation based on denoising preprocessing[C]∥2020 Sensor Signal Processing for Defence Conference (SSPD). Piscataway: IEEE Press, 2020: 1-5. |
39 | JIANG B, LU A N, XU J. An improved signal number estimation method based on information theoretic criteria in array processing[C]∥2019 IEEE 11th International Conference on Communication Software and Networks. Piscataway: IEEE Press, 2019: 193-197. |
40 | ROGERS J, BALL J E, GURBUZ A C. Robust estimation of the number of coherent radar signal sources using deep learning[J]. IET Radar, Sonar & Navigation, 2021, 15(5): 431-440. |
41 | VIBERG M, OTTERSTEN B. Sensor array processing based on subspace fitting[J]. IEEE Transactions on Signal Processing, 1991, 39(5): 1110-1121. |
42 | ZHANG L, YANG B, LUO M K. Joint delay and Doppler shift estimation for multiple targets using exponential ambiguity function[J]. IEEE Transactions on Signal Processing, 2017, 65(8): 2151-2163. |
43 | ZHANG X D, LI H B, HIMED B. Maximum likelihood delay and Doppler estimation for passive sensing[J]. IEEE Sensors Journal, 2019, 19(1): 180-188. |
44 | NG B C, NEHORAI A. Active array sensor localization[J]. Signal Processing, 1995, 44(3): 309-327. |
45 | WANG L, HON T K, REISS J D, et al. Self-localization of ad-hoc arrays using time difference of arrivals[J]. IEEE Transactions on Signal Processing, 2016, 64(4): 1018-1033. |
46 | BERTSEKAS D P. Nonlinear programming[M]. 2nd ed. Belmont: Athena Scientific, 1999. |
47 | 高祺. 多传感器多目标跟踪的数据关联算法研究[D]. 西安: 西安电子科技大学, 2013. |
GAO Q. Research on multisensor-multitarget tracking data association algorithm[D]. Xi’an: Xidian University, 2013 (in Chinese). |
[1] | Jun XIONG, Xiangpeng XIE, Zhi XIONG, Yuan ZHUANG, Yu ZHENG. Synchronized self⁃localization and relative⁃localization of unmanned swarms based on graph model [J]. Acta Aeronautica et Astronautica Sinica, 2023, 44(S2): 729708-729708. |
[2] | WANG Ding, YIN Jiexin, GAO Lu, YANG Bin. A novel method for TDOA localization in presence of synchronization clock bias and sensor position uncertainty [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2022, 43(7): 325405-325405. |
[3] | SUN Ting, DONG Chunxi, DONG Yangyang, LIU Mingming. A TDOA/FDOA passive location algorithm with the minimum number of stations [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2019, 40(9): 322902-322902. |
[4] | LU Hu, JIANG Xiaoqiang, MIN Huan. Distributed SOR multi-agent trajectory estimation method with communication constraints [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2019, 40(10): 323056-323056. |
Viewed | ||||||||||||||||||||||||||||||||||||||||||||||||||
Full text 576
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Abstract 2260
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Address: No.238, Baiyan Buiding, Beisihuan Zhonglu Road, Haidian District, Beijing, China
Postal code : 100083
E-mail:hkxb@buaa.edu.cn
Total visits: 6658907 Today visits: 1341All copyright © editorial office of Chinese Journal of Aeronautics
All copyright © editorial office of Chinese Journal of Aeronautics
Total visits: 6658907 Today visits: 1341