1 |
曾徽, 陈智铭, 闫宪翔, 等. 电弧加热器铜污染组分效应发射光谱定量研究[J]. 航空学报, 2020, 41(4): 123521.
|
|
ZENG H, CHEN Z M, YAN X X, et al. Quantitative study on emission spectrum of copper pollution component effect in arc heater[J]. Acta Aeronautica et Astronautica Sinica, 2020, 41(4): 123521 (in Chinese).
|
2 |
杨卫丽, 廖孟豪, 方勇. 美俄高超声速导弹发展取得突破性进展[J]. 战术导弹技术, 2019(1): 15-18, 32.
|
|
YANG W L, LIAO M H, FANG Y. Breakthrough progress has been made in the development of hypersonic missiles in the United States and Russia[J]. Tactical Missile Technology, 2019(1): 15-18, 32 (in Chinese).
|
3 |
刘丽萍, 王国林, 王一光, 等. 高焓化学非平衡流条件下防热材料表面催化特性的试验方法[J]. 航空学报, 2017, 38(10): 121317.
|
|
LIU L P, WANG G L, WANG Y G, et al. Test method for surface catalytic characteristics of thermal protection materials under high enthalpy chemical non-equilibrium flow conditions[J]. Acta Aeronautica et Astronautica Sinica, 2017, 38(10): 121317 (in Chinese).
|
4 |
曾庆轩. 硅基材料表面与氧原子相互作用的光谱诊断与模拟研究[D]. 哈尔滨: 哈尔滨工业大学, 2020: 1-4.
|
|
ZENG Q X. Spectroscopic diagnosis and simulation of the interaction between silicon-based materials and oxygen atoms[D]. Harbin: Harbin Institute of Technology, 2020: 1-4 (in Chinese).
|
5 |
刘丽萍, 王一光, 王国林, 等. 大气压条件下高焓空气等离子体流场特性及应用[J]. 航空学报, 2018, 39(8): 122132.
|
|
LIU L P, WANG Y G, WANG G L, et al. Characteristics and application of high enthalpy air plasma flow field under atmospheric pressure[J]. Acta Aeronautica et Astronautica Sinica, 2018, 39(8): 122132 (in Chinese).
|
6 |
陈卫, 伍越, 黄祯君, 等. 基于TDLAS的电弧风洞流场Cu组分监测[J]. 航空学报, 2019, 40(8): 122841.
|
|
CHEN W, WU Y, HUANG Z J, et al. Monitoring of Cu composition in flow field of arc wind tunnel based on TDLAS[J]. Acta Aeronautica et Astronautica Sinica, 2019, 40(8): 122841 (in Chinese).
|
7 |
CHAZOT O, PANERAI F. High-enthalpy facilities and plasma wind tunnels for aerothermodynamics ground testing[M]∥Hypersonic Nonequilibrium Flows: Fundamentals and Recent Advances. Reston: AIAA, 2015: 329-342.
|
8 |
YAN H, ZHANG S H, WANG F Y, et al. High-enthalpy flow investigations by UV laser-induced fluorescence[C]∥2019 PhotonIcs & Electromagnetics Research Symposium-Spring (PIERS-Spring). Piscataway: IEEE Press, 2020: 4242-4247.
|
9 |
TAKAYANAGI H, SHUN K, SAKAI T, et al. Translational temperature distribution measurements in high enthalpy flows by Laser-Induced Fluorescence[C]∥51st AIAA Aerospace Sciences Meeting including the New Horizons Forum and Aerospace Exposition. Reston: AIAA, 2013: 741.
|
10 |
RAO X, MATVEEV I B, LEE T H. Nitric oxide formation in a premixed flame with high-level plasma energy coupling[J]. IEEE Transactions on Plasma Science, 2009, 37(12): 2303-2313.
|
11 |
SCHMIDT J B, JIANG N, GANGULY B N. Nitric oxide PLIF measurement in a point-to-plane pulsed discharge in vitiated air of a propane/air flame[J]. Plasma Sources Science and Technology, 2014, 23(6): 065005.
|
12 |
TAKAYANAGI H, MIZUNO M, FUJII K, et al. Arc wind tunnel flow characterization measured by laser-induced fluorescence of atomic species[C]∥41st AIAA Thermophysics Conference. Reston: AIAA, 2009.
|
13 |
MIZUNO M, ITO T, ISHIDA K, et al. Laser induced fluorescence of nitric oxide and atomic oxygen in an arc heated wind tunnel[C]∥39th AIAA Thermophysics Conference. Reston: AIAA, 2007.
|
14 |
TAKAYANAGI H, MIZUNO M, FUJII K, et al. Arc heated wind tunnel flow diagnostics using laser-induced fluorescence of atomic species[C]∥47th AIAA Aerospace Sciences Meeting including The New Horizons Forum and Aerospace Exposition. Reston: AIAA, 2009.
|
15 |
KIRSCHNER M, GARCIA-GARRIDO J, SANDER T, et al. Temperature measurements in an arc-heated plasma wind tunnel by laser-induced fluorescence[J]. Journal of Thermophysics and Heat Transfer, 2015, 30(1): 42-53.
|
16 |
INMAN J A, BATHEL B F, JOHANSEN C T, et al. Nitric-oxide planar laser-induced fluorescence measurements in the hypersonic materials environmental test system[J]. AIAA Journal, 2013, 51(10): 2365-2379.
|
17 |
MCDOUGALL C C, JOHANSEN C T, HERRMANN-STANZEL R, et al. Nitric oxide laser-induced fluorescence rotational thermometry in a hypersonic non-equilibrium flow[C]∥AIAA Scitech 2020 Forum. Reston: AIAA, 2020.
|
18 |
GRINSTEAD J, PORTER B, CARBALLO E. Flow property measurements using laser-induced fluorescence in the NASA Ames interaction heating facility arc jet[C]∥49th AIAA Aerospace Sciences Meeting including the New Horizons Forum and Aerospace Exposition. Reston: AIAA, 2011.
|
19 |
GRINSTEAD J H, WILDER M C, PORTER B, et al. Consolidated laser-induced fluorescence diagnostic systems for the NASA Ames arc jet facilities[C]∥32nd AIAA Aerodynamic Measurement Technology and Ground Testing Conference. Reston: AIAA, 2016.
|
20 |
严浩, 张少华, 王方仪, 等. NO激光诱导荧光对高焓气流温度的测量[J]. 气体物理, 2020, 5(2): 1-7.
|
|
YAN H, ZHANG S H, WANG F Y, et al. Measurement of high enthalpy gas flow temperature by NO laser-induced fluorescence[J]. Physics of Gases, 2020, 5(2): 1-7 (in Chinese).
|
21 |
朱家健, 万明罡, 吴戈, 等. 激光诱导荧光技术燃烧诊断的研究进展[J]. 中国激光, 2021, 48(4): 78-110.
|
|
ZHU J J, WAN M G, WU G, et al. Research progress of combustion diagnosis by laser-induced fluorescence technology[J]. Chinese Journal of Lasers, 2021, 48(4): 78-110 (in Chinese).
|
22 |
卢新培, 吴帆, 李嘉胤. 大气压非平衡等离子体诊断:激光诱导荧光[J]. 高电压技术, 2021, 47(5): 1831-1846.
|
|
LU X P, WU F, LI J Y. Diagnosis of atmospheric pressure non-equilibrium plasma: Laser-induced fluorescence[J]. High Voltage Engineering, 2021, 47(5): 1831-1846 (in Chinese).
|
23 |
王宁. 定量测量OH基浓度的PLIF技术研究及应用[D]. 长沙: 国防科学技术大学, 2009: 10-18.
|
|
WANG N. Research and application of PLIF technology for quantitative measurement of OH group concentration[D].Changsha: National University of Defense Technology, 2009: 10-18. (in Chinese)
|
24 |
周淼. 基于丙酮平面激光诱导荧光气流混合比测量研究[D]. 哈尔滨: 哈尔滨工业大学, 2015: 8-10.
|
|
ZHOU M. Study on measurement of mixing ratio of plane laser-induced fluorescence gas flow based on acetone[D].Harbin: Harbin Institute of Technology, 2015: 8-10 (in Chinese).
|
25 |
常光. 用于气态流场浓度分布测量的平面激光诱导荧光技术研究[D]. 哈尔滨: 哈尔滨工业大学, 2021: 2-5.
|
|
CHANG G. Study on planar laser induced fluorescence technology for measuring concentration distribution of gas flow field[D].Harbin: Harbin Institute of Technology, 2021: 2-5 (in Chinese).
|
26 |
曾徽, 陈连忠, 林鑫, 等. 电弧加热器高温流场激光吸收光谱诊断[J]. 实验流体力学, 2017, 31(4): 28-33.
|
|
ZENG H, CHEN L Z, LIN X, et al. Laser absorption spectrum diagnosis of high temperature flow field in arc heater[J]. Journal of Experiments in Fluid Mechanics, 2017, 31(4): 28-33 (in Chinese).
|
27 |
欧东斌, 陈连忠, 董永晖, 等. 电弧风洞中基于TDLAS的气体温度和氧原子浓度测试[J]. 实验流体力学, 2015, 29(3): 62-67.
|
|
OU D B, CHEN L Z, DONG Y H, et al. Measurement of gas temperature and oxygen atom concentration based on TDLAS in arc wind tunnel[J]. Journal of Experiments in Fluid Mechanics, 2015, 29(3): 62-67 (in Chinese).
|
28 |
盛洁. 预混火焰中一氧化氮平面激光诱导荧光测量方法研究[D]. 哈尔滨: 哈尔滨工业大学, 2015: 13-15.
|
|
SHENG J. Study on measurement method of nitric oxide induced fluorescence by plane laser in premixed flame[D].Harbin: Harbin Institute of Technology, 2015: 13-15 (in Chinese).
|
29 |
袁勋, 于欣, 彭江波, 等. 超声速火焰的3DLIF可视化技术研究[J]. 实验流体力学, 2022, 36(4): 30-36.
|
|
YUAN X, YU X, PENG J B, et al. Research on 3DLIF visualization technology of supersonic flame[J]. Journal of Experiments in Fluid Mechanics, 2022, 36(4): 30-36 (in Chinese).
|