[1] DARWIN C, EVANS H M, ROSE P. On the origin of species by means of natural selection:Or, the preservation of favoured races in the struggle for life[M]. London:John Murray, 1859. [2] WIENER N. Cybernetics; or, control and communication in the animal and the machine[M]. Cambridge:MIT Press, 1948. [3] ASHBY W R. An introduction to cybernetics[M]. New York:Wiley, 1956. [4] FROESE T. Life after Ashby:Ultrastability and the autopoietic foundations of biological autonomy[J]. Cybernetics & Human Knowing, 2010, 17(4):7-50 [5] HEYLIGHEN F. Cybernetic principles of aging and rejuvenation:The buffering- challenging strategy for life extension[J]. Current Aging Science, 2014, 7(1):60-75. [6] CHATTERJEE A, GEORGIEV G, IANNACCHIONE G. Aging and efficiency in living systems:Complexity, adaptation and self-organization[J]. Mechanisms of Ageing and Development, 2017, 163:2-7. [7] TURING A M. Computing machinery and intelligence[J]. Mind, 1950, 59(236):433-460. [8] 钱学森. 工程控制论[M]. 北京:科学出版社, 1958. TSIEN H S. Engineering cybernetics[M]. Beijing:Science Press, 1958. [9] 杨嘉墀, 戴汝为. 智能控制在国内的进展[J]. 中国仪器仪表, 1993(4):8-13. YANG J C, DAI R W. Progress of intelligent control in China[J]. China Instrumentation, 1993(4):8-13 (in Chinese). [10] 吴宏鑫, 胡军, 解永春. 航天器智能自主控制研究的回顾与展望[J]. 空间控制技术与应用, 2016, 42(1):1-6. WU H X, HU J, XIE Y C. Spacecraft intelligent autonomous control:Past, present and future[J]. Aerospace Control and Application, 2016, 42(1):1-6 (in Chinese). [11] 包为民. 航天智能控制技术让运载火箭"会学习"[J]. 航空学报, 2021, 42(11):525055. BAO W M. Space intelligent control technology enables launch vehicle to "self-learning"[J]. Acta Aeronautica et Astronautica Sinica, 2021, 42(11):525055 (in Chinese). [12] 郭雷. 不确定性动态系统的估计、控制与博弈[J]. 中国科学:信息科学, 2020, 50(9):1327-1344. GUO L. Estimation, control, and games of dynamical systems with uncertainty[J]. Scientia Sinica (Informationis), 2020, 50(9):1327-1344 (in Chinese). [13] ZHENG N N, LIU Z Y, REN P J, et al. Hybrid-augmented intelligence:Collaboration and cognition[J]. Frontiers of Information Technology & Electronic Engineering, 2017, 18(2):153-179. [14] 柴天佑. 工业人工智能发展方向[J]. 自动化学报, 2020, 46(10):2005-2012. CHAI T Y. Development directions of industrial artificial intelligence[J]. Acta Automatica Sinica, 2020, 46(10):2005-2012 (in Chinese). [15] 戴琼海. 人工智能的几点思考[EB/OL]. (2020-09-02)[2022-03-01]. https://www.sohu.com/a/416149806_505819. DAI Q H. Some thoughts on artificial intelligence[EB/OL]. (2020-09-02)[2022-03-01]. https://www.sohu.com/a/416149806_505819 (in Chinese). [16] 徐宗本. 人工智能的10个重大数理基础问题[J]. 中国科学:信息科学, 2021, 51(12):1967-1978. XU Z B. Ten fundamental problems for artificial intelligence:Mathematical and physical aspects[J]. Scientia Sinica (Informationis), 2021, 51(12):1967-1978 (in Chinese). [17] 郑志明, 吕金虎, 韦卫, 等. 精准智能理论:面向复杂动态对象的人工智能[J]. 中国科学:信息科学, 2021, 51(4):678-690. ZHENG Z M, LV J H, WEI W, et al. Refined intelligence theory:Artificial intelligence regarding complex dynamic objects[J]. Scientia Sinica (Informationis), 2021, 51(4):678-690 (in Chinese). [18] 陈杰, 辛斌. 有人/无人系统自主协同的关键科学问题[J]. 中国科学:信息科学, 2018, 48(9):1270-1274. CHEN J, XIN B. Key scientific problems in the autonomous cooperation of manned-unmanned systems[J]. Scientia Sinica (Informationis), 2018, 48(9):1270-1274 (in Chinese). [19] 王耀南. 人工智能赋能无人系统[J]. 智能系统学报, 2021, 16(1):6. WANG Y N. Artificial intelligence enabled unmanned system[J]. CAAI Transactions on Intelligent Systems, 2021, 16(1):6 (in Chinese). [20] WU C, ZHANG T. Intelligent unmanned systems:Important achievements and applications of new generation artificial intelligence[J]. Frontiers of Information Technology & Electronic Engineering, 2020, 21(5):649-651. [21] SANTOSO F, GARRATT M A, ANAVATTI S G. State-of-the-art intelligent flight control systems in unmanned aerial vehicles[J]. IEEE Transactions on Automation Science and Engineering, 2018, 15(2):613-627. [22] ÅSTRÖM K J, KUMAR P R. Control:A perspective[J]. Automatica, 2014, 50(1):3-43. [23] GUO L, CHEN W H. Disturbance attenuation and rejection for systems with nonlinearity via DOBC approach[J]. International Journal of Robust and Nonlinear Control, 2005, 15(3):109-125. [24] GUO L, CAO S Y. Anti-disturbance control for systems with multiple disturbances[M]. Boca Raton:CRC Press, 2013. [25] GUO L, CAO S Y. Anti-disturbance control theory for systems with multiple disturbances:A survey[J]. ISA Transactions, 2014, 53(4):846-849. [26] 郭雷, 朱玉凯. 多源干扰系统复合自主抗干扰控制技术[M]//中国科研信息化蓝皮书, 2020:210-220. GUO L, ZHU Y K. Composite autonomous anti-disturbance control for systems with multiple disturbances[M]//China's e-Science Blue Book, 2020:210-220 (in Chinese). [27] 郭雷, 余翔, 张霄, 等. 无人机安全控制系统技术:进展与展望[J]. 中国科学:信息科学, 2020, 50(2):184-194. GUO L, YU X, ZHANG X, et al. Safety control system technologies for UAVs:Review and prospect[J]. Scientia Sinica (Informationis), 2020, 50(2):184-194 (in Chinese). [28] YUAN Y, YUAN H H, HO D W C, et al. Resilient control of wireless networked control system under denial-of-service attacks:A cross-layer design approach[J]. IEEE Transactions on Cybernetics, 2020, 50(1):48-60. [29] 郭雷, 袁源, 乔建忠, 等. 无人系统免疫智能技术[J]. 航空学报, 2020, 41(11):024618. GUO L, YUAN Y, QIAO J Z, et al. Immune intelligence of unmanned system[J]. Acta Aeronautica et Astronautica Sinica, 2020, 41(11):024618 (in Chinese). [30] YU X. Autonomous safety control of flight vehicles[M]. Boca Raton:CRC Press, 2021. [31] YUAN Y, YANG H J, GUO L, et al. Analysis and design of networked control systems under attacks[M]. Boca Raton:CRC Press, 2019. [32] GUO L, ZHU Y K, QIAO J Z, et al. Composite anti-disturbance dynamic regulation for systems with multiple disturbances:From stability to balance[C]//2021 33rd Chinese Control and Decision Conference (CCDC). Piscataway:IEEE Press, 2021:5685-5690. [33] GU Y P, YU X, GUO K X, et al. Detection, estimation, and compensation of false data injection attack for UAVs[J]. Information Sciences, 2021, 546:723-741. [34] GUO K X, JIA J D, YU X, et al. Multiple observers based anti-disturbance control for a quadrotor UAV against payload and wind disturbances[J]. Control Engineering Practice, 2020, 102:104560. [35] DING Y S, XU N, DAI S F, et al. An immune system-inspired reconfigurable controller[J]. IEEE Transactions on Control Systems Technology, 2016, 24(5):1875-1882. [36] ZHENG J Q, CHEN Y F, ZHANG W. A survey of artificial immune applications[J]. Artificial Intelligence Review, 2010, 34(1):19-34. [37] ZHU Y K, QIAO J Z, ZHANG Y M, et al. High-precision trajectory tracking control for space manipulator with neutral uncertainty and deadzone nonlinearity[J]. IEEE Transactions on Control Systems Technology, 2019, 27(5):2254-2262. [38] ZHU Y K, QIAO J Z, GUO L. Adaptive sliding mode disturbance observer-based composite control with prescribed performance of space manipulators for target capturing[J]. IEEE Transactions on Industrial Electronics, 2019, 66(3):1973-1983. [39] CUI Y Y, YANG Y J, ZHU Y K, et al. Composite velocity-tracking control for flexible gimbal system with multi-frequency-band disturbances[J]. IEEE Transactions on Circuits and Systems I:Regular Papers, 2021, 68(10):4360-4370. [40] DUAN G R. High-order fully actuated system approaches:Part VII. Controllability, stabilisability and parametric designs[J]. International Journal of Systems Science, 2021, 52(14):3091-3114. [41] 张霄, 王悦, 郭雷. 强干扰环境下的自主导航与控制新技术[J]. 自动化博览, 2015(4):68-72. ZHANG X, WANG Y, GUO L. Novel technology of autonomous navigation and control in strong disturbance environments[J]. Automation Panorama, 2015(4):68-72 (in Chinese). [42] ZHU D J, YANG S X. Bio-inspired neural network-based optimal path planning for UUVs under the effect of ocean currents[J]. IEEE Transactions on Intelligent Vehicles, 2022, 7(2):231-239. |