[1] 刘君, 邹东阳, 徐春光. 基于非结构动网格的非定常激波装配法[J]. 空气动力学学报, 2015, 33(1):10-16. LIU J, ZOU D Y, XU C G. An unsteady shock-fitting technique based on unstructured moving grids[J]. Acta Aerodynamica Sinica, 2015, 33(1):10-16(in Chinese). [2] ZOU D Y, XU C G, DONG H B, et al. A shock-fitting technique for cell-centered finite volume methods on unstructured dynamic meshes[J]. Journal of Computational Physics, 2017, 345:866-882. [3] CHANG S, BAI X, ZOU D, et al. An adaptive discontinuity fitting technique on unstructured dynamic grids[J]. Shock Waves, 2019, 29(8):1103-1115. [4] 刘君, 韩芳, 夏冰. 有限差分法中几何守恒律的机理及算法[J]. 空气动力学学报, 2018, 36(6):917-926. LIU J, HAN F, XIA B. Mechanism and algorithm for geometric conservation law in finite difference method[J]. Acta Aerodynamica Sinica, 2018, 36(6):917-926(in Chinese). [5] 刘君, 韩芳. 有限差分法中的贴体坐标变换[J]. 气体物理, 2018, 3(5):18-29. LIU J, HAN F. Body-fitted coordinate transformation for finite difference method[J]. Physics of Gases, 2018, 3(5):18-29(in Chinese). [6] 刘君, 韩芳. 有关有限差分高精度格式两个应用问题的讨论[J]. 空气动力学学报, 2020, 38(2):244-253. LIU J, HAN F. Discussions on two problems in applications of high-order finite difference schemes[J]. Acta Aerodynamica Sinica, 2020, 38(2):244-253(in Chinese). [7] 刘君, 陈洁, 韩芳. 基于离散等价方程的非结构网格有限差分法[J]. 航空学报, 2020, 41(1):123248. LIU J, CHEN J, HAN F. Finite difference method for unstructured grid based on discrete equivalent equation[J]. Acta Aeronautica et Astronautica Sinica, 2020, 41(1):123248(in Chinese). [8] STEGER J. Implicit finite difference simulation of flow about arbitrary geometries with application to airfoils[C]//10th Fluid and Plasmadynamics Conference. Reston:AIAA, 1977. [9] STEGER J L. Implicit finite-difference simulation of flow about arbitrary two-dimensional geometries[J]. AIAA Journal, 1978, 16(7):679-686. [10] HINDMAN R. Geometrically induced errors and their relationship to the form of the governing equations and the treatment of generalized mappings[C]//5th Computational Fluid Dynamics Conference. Reston:AIAA, 1981. [11] HINDMAN R G. Generalized coordinate forms of governing fluid equations and associated geometrically induced errors[J]. AIAA Journal, 1982, 20(10):1359-1367. [12] THOMAS P, LOMBARD C. The geometric conservation law-a link between finite-difference and finite-volume methods of flow computation on moving grids[C]//11th Fluid and Plasma Dynamics Conference. Reston:AIAA, 1978. [13] THOMAS P D, LOMBARD C K. Geometric conservation law and its application to flow computations on moving grids[J]. AIAA Journal, 1979, 17(10):1030-1037. [14] VISBAL M R, GAITONDE D V. On the use of higher-order finite-difference schemes on curvilinear and deforming meshes[J]. Journal of Computational Physics, 2002, 181(1):155-185. [15] 闵耀兵. 高阶精度有限差分方法几何守恒律研究[D]. 绵阳:中国空气动力研究与发展中心, 2015. MIN Y B. The studies on geometric conservation law for high order finite difference method[D]. Mianyang:China Aerodynamics Research and Development Center,2015(in Chinese). [16] 刘君, 白晓征, 张涵信, 等. 关于变形网格"几何守恒律"概念的讨论[J]. 航空计算技术, 2009, 39(4):1-5. LIU J, BAI X Z, ZHANG H X, et al. Discussion about GCL for deforming grids[J]. Aeronautical Computing Technique, 2009, 39(4):1-5(in Chinese). [17] 刘君, 刘瑜, 陈泽栋. 非结构变形网格和离散几何守恒律[J]. 航空学报, 2016, 37(8):2395-2407. LIU J, LIU Y, CHEN Z D. Unstructured deforming mesh and discrete geometric conservation law[J]. Acta Aeronautica et Astronautica Sinica, 2016, 37(8):2395-2407(in Chinese). [18] DENG X G, MAO M L, TU G H, et al. Geometric conservation law and applications to high-order finite difference schemes with stationary grids[J]. Journal of Computational Physics, 2011, 230(4):1100-1115. [19] DENG X G, MIN Y B, MAO M L, et al. Further studies on Geometric Conservation Law and applications to high-order finite difference schemes with stationary grids[J]. Journal of Computational Physics, 2013, 239:90-111. [20] NONOMURA T, TERAKADO D, ABE Y, et al. A new technique for freestream preservation of finite-difference WENO on curvilinear grid[J]. Computers & Fluids, 2015, 107:242-255. [21] 朱志斌, 杨武兵, 禹旻. 满足几何守恒律的WENO格式及其应用[J]. 计算力学学报, 2017, 34(6):779-784. ZHU Z B, YANG W B, YU M. A WENO scheme with geometric conservation law and its application[J]. Chinese Journal of Computational Mechanics, 2017, 34(6):779-784(in Chinese). [22] ZHU Y J, SUN Z S, REN Y X, et al. A numerical strategy for freestream preservation of the high order weighted essentially non-oscillatory schemes on stationary curvilinear grids[J]. Journal of Scientific Computing, 2017, 72(3):1021-1048. |