[1] KLEMM R. Applications of space-time adaptive processing[M]. London:The Institution of Electrical Engineers, 2004:9-11. [2] 毕权杨, 李旦, 张建秋. 空时自适应处理张量波束成形器的外积合成法[J]. 航空学报, 2019, 40(10):322939. BI Q Y, LI D, ZHANG J Q. An outer product synthesis approach to tensor beamformer for space-time adaptive processing[J]. Acta Aeronautica et Astronautica Sinica, 2019, 40(10):322939(in Chinese). [3] REED I S, MALLETT J D, BRENNAN L E. Rapid convergence rate in adaptive arrays[J]. IEEE Transactions on Aerospace and Electronic Systems, 2007, 10(6):853-863. [4] DUAN K Q, YUAN H D, XU H, et al. Sparsity-based non-stationary clutter suppression technique for airborne radar[J]. IEEE Access, 2018, 6:56162-56169. [5] KLEMM R. Adaptive airborne MTI:An auxiliary channel approach[J]. IEE Proceedings-F:Communications, Radar and Signal Processing, 1987, 134(3):269-276. [6] DIPIETRO R C. Extended factored space-time processing for airborne radar systems[C]//Proceedings of the 26th Asilomar Conference on Signals, Systems and Computers. Piscataway:IEEE Press, 1992:425-430. [7] WANG Y L, CHEN J W, BAO Z, et al. Robust space-time adaptive processing for airborne radar in nonhomogeneous clutter environments[J]. IEEE Transactions on Aerospace and Electronic Systems,2003, 39(1):70-81. [8] KLEMM R. New airborne MTI techniques[C]//Proceedings of the International Radar Conference. London, IEE, 1987:380-384. [9] GOLLDSTEIN J S, REED I S, SCHARF L L. A multistage representation of the Wiener filter based on orthogonal projections[J]. IEEE Transactions on Information Theory, 1998, 44(7):2943-2959. [10] CANDES E J, WAKIN M B. An introduction to compressive sampling[J]. IEEE Signal Processing Magazine, 2008, 25(2):21-30. [11] ENDER J H G. On compressive sensing applied to radar[J]. Signal Processing, 2010, 90(5):1402-1414. [12] 阳召成, 黎湘, 王宏强. 基于空时功率谱稀疏性的空时自适应处理技术研究进展[J]. 电子学报, 2014, 42(6):1194-1204. YANG Z C, LI X, WANG H Q. An overview of space-time adaptive processing technology based on sparsity of space-time power spectrum[J]. Acta Electronica Sinica, 2014, 42(6):1194-1204(in Chinese). [13] 马泽强, 王希勤, 刘一民, 等. 基于稀疏恢复的空时二维自适应处理技术研究现状[J]. 雷达学报, 2014, 3(2):217-228. MA Z Q, WANG X Q, LIU Y M, et al. An overview on sparse recovery-based STAP[J]. Journal of Radars, 2014, 3(2):217-228(in Chinese). [14] SUN K, MENG H D, WANG Y L, et al. Direct data domain STAP using sparse representation of clutter spectrum[J]. Signal Processing, 2011, 91(9):2222-2236. [15] 孙珂, 张颢, 李刚, 等. 基于杂波谱稀疏恢复的空时自适应处理[J]. 电子学报, 2011, 39(6):1389-1393. SUN K, ZHANG H, LI G, et al. STAP via Recovery of clutter spectrum[J]. Acta Electronica Sinica, 2011, 39(6):1389-1393(in Chinese). [16] YANG Z C, QIN Y, DE LAMARE R C, et al. Sparsity-based direct data domain space-time adaptive processing with intrinsic clutter motion[J]. Circuits, Systems, and Signal Processing, 2017, 36(1):219-246. [17] WANG L, LIU Y, MA Z Q, et al. A novel STAP method based on structured sparse recovery of clutter spectrum[C]//Proceedings of the International Radar Conference. Piscataway:IEEE Press, 2015:561-565. [18] DUAN K Q, WANG Z Q, XIE W C, et al. Sparsity-based STAP algorithm with multiple measurement vectors via sparse Bayesian learning strategy for airborne radar[J]. IET Signal Processing, 2017, 11(5):544-553. [19] YANG Z C, LI X, WANG H Q, et al. Knowledge-aided STAP with sparse-recovery by exploiting spatio-temporal sparsity[J]. IET Signal Processing, 2016, 10(2):150-161. [20] ZHU H, LEUS G, GIANNAKIS G B. Sparsity-cognizant total least-squares for perturbed compressive sampling[J]. IEEE Transactions on Signal Processing, 2011, 59(5):2002-2016. [21] ZHENG J, KAVEH M. Directions-of-arrival estimation using a sparse spatial spectrum model with uncertainty[C]//Proceedings of IEEE International Conference on Acoustics, Speech and Signal Processing. Piscataway:IEEE Press, 2011:2848-2851. [22] YANG Z, XIE L H, ZHANG C. Off-grid direction of arrival estimation using sparse Bayesian inference[J]. IEEE Transactions on Signal Processing, 2013, 61(1):38-43. [23] BAI L, ROY S, RANGASWAMY M. Compressive radar clutter subspace estimation using dictionary learning[C]//Proceedings of the International Radar Conference. Piscataway:IEEE Press, 2013:1-6. [24] DUAN K Q, LIU W J, DUAN G, et al. Off-grid effects mitigation exploiting knowledge of the clutter ridge for sparse recovery STAP[J]. IET Radar, Sonar and Navigation, 2018, 12(5):557-564. [25] BAI G T, TAO R, ZHAO J, et al. Parameter-searched OMP method for eliminating basis mismatch in space-time spectrum estimation[J]. Signal Processing, 2017, 138(1):11-15. [26] YANG Z, LAMARE R C D. Enhanced knowledge-aided space-time adaptive processing exploiting inaccurate prior knowledge of the array manifold[J]. Digital Signal Processing, 2016, 60:262-276. |