[1] RAUCH M, LAGUIONIE R, HASCOET J Y, et al. An advanced STEP-NC controller for intelligent machining processes[J]. Robotics & Computer Integrated Manufacturing, 2012, 28(3):375-384. [2] HARDWICK M, ZHAO Y F, PROCTOR F M, et al. A roadmap for STEP-NC-enabled interoperable manufacturing[J]. International Journal of Advanced Manufacturing Technology, 2013, 68(5-8):1023-1037. [3] JOSHI S, CHANG T C. Graph-based heuristics for recognition of machined features from a 3D solid model[J]. Computer-Aided Design, 1988, 20(2):56-66. [4] 韩娟, 张发平, 高博, 等. 基于图和规则的混合式特征识别技术[J]. 机械设计与制造, 2013(3):97-100. HAN J, ZHANG F P,GAO B, et al. The hybrid characteristics identification technology based on the diagram and rules[J]. Machinery Design & Manufacture, 2013(3):97-100(in Chinese). [5] 谢飞,, 郭宇, 张红蕾, 等. 基于图和子图同构算法的制造特征识别方法[J]. 南京航空航天大学学报, 2018, 50(3):390-396. XIE F, GUO Y, ZHANG H L, et al. Manufacturing feature recognition based on graph and subgraph isomorphism algorithm[J]. Journal of Nanjing University of Aeronautics & Astronautics, 2018, 50(3):390-396(in Chinese). [6] VANDENBRANDE J H, REQUICHA A A G. Spatial reasoning for the automatic recognition of machinable features in solid models[J]. IEEE Transactions on Pattern Analysis & Machine Intelligence, 1993, 15(12):1269-1285. [7] GAO S, SHAH J J. Automatic recognition of interacting machining features based on minimal condition subgraph[J]. Computer-Aided Design, 1998, 30(9):727-739. [8] 赵鹏, 盛步云. 基于切削体分解组合策略的工艺特征识别方法[J]. 华南理工大学学报(自然科学版), 2011, 39(8):30-35. ZHAO P,SHENG B Y. Recognition method of process feature based on delta-volume decomposition and combination strategy[J]. Journal of South China University of Technology (Natural Science Edition), 2011, 39(8):30-35(in Chinese). [9] 刘长青, 李迎光, 王鹏程, 等. 复杂结构件数控编程加工特征用户自定义方法[J]. 航空学报, 2017, 38(6):248-257. LIU C Q, LI Y G,WANG P C, et al. A user defined method for machining features in NC programming of complex structural parts[J]. Acta Aeronautica et Astronautica Sinica, 2017, 38(6):248-257(in Chinese). [10] 吴晓东, 韩祖行. 基于属性邻接图的STEP-NC制造特征识别实现[J]. 机械设计与制造工程, 2013, 42(7):13-16. WU X D, HAN Z X. Implementation of STEP-NC manufacturing feature recognition based on attribute adjacent graph[J]. Machine Design & Manufacturing Engineering,2013, 42(7):13-16(in Chinese). [11] 李梅竹, 陈荣. 基于痕迹对STEP文件进行特征识别的研究[J]. 陕西科技大学学报, 2011, 29(4):57-62. LI M Z, CHEN R. A study of feature recognition based on hint from STEP files[J]. Journal of Shaanxi University of Science and Technology, 2011, 29(4):57-62(in Chinese). [12] 王军, 欧道江, 舒启林, 等. 基于STEP-NC的相交特征识别技术[J]. 计算机集成制造系统, 2014, 20(5):1051-1061. WANG J, OU D J, SHU Q L, et al. Interacting feature recognition technology based on STEP-NC[J]. Computer Integrated Manufacturing Systems, 2014, 20(5):1051-1061(in Chinese). [13] 孙军, 王军, 王宛山, 等. 基于STEP-NC的制造特征识别方法研究[C]//孙铁珩, 汝信. 自主创新振兴东北高层论坛暨第二届沈阳科学学术年会论文集. 沈阳:沈阳出版社, 2005:222-228. SUN J,WANG J, WANG W S, et al. Research on manufacturing feature recognition method based on STEP-NC[C]//SUN T H, RU X. Independent Innovation and Revitalization of the Northeast High-level Forum and the 2nd Shenyang Science Academic Conference. Shenyang:Shenyang Press, 2005:222-228(in Chinese). [14] POBOZ·NIAK J. Algorithm for ISO 14649(STEP-NC) feature recognition[J]. Management & Production Engineering Review, 2013, 4(4):50-58. [15] ZHANG X, NASSEHI A, NEWMAN S T. Feature recognition from CNC part programs for milling operations[J]. International Journal of Advanced Manufacturing Technology, 2014, 70(1-4):397-412. [16] ZHANG Y, XUN X, LIU Y X, et al. Service-oriented, cross-platform and high-level machining simulation[J]. International Journal of Computer Integrated Manufacturing, 2012, 25(3):280-295. [17] INTERNATIONAL O F S. Industrial automation systems and integration-physical device control-data model for computerized numerical controllers-part 01:Overview and fundamental principles:ISO 14649-1[S]. Switzerland:International Organization for Standards, 2003. [18] XU X W, WANG H, MAO J, et al. STEP-compliant NC research:the search for intelligent CAD/CAPP/CAM/CNC integration[J]. International Journal of Production Research, 2005, 43(17):3703-3743. [19] DIPPER T, XU X, KLEMM P. Defining recognizing and representing feature interactions in a feature-based data model[J]. Robotics & Computer Integrated Manufacturing, 2011, 27(1):101-114. [20] 陶建华, 杨晓琴,刘晓初,等. 基于工艺特征识别技术的数控自动编程方法研究[J]. 计算机工程与设计, 2011, 32(10):3548-3552. TAO J H, YANG X Q, LIU X C, et al. Research of NC automatic programming based on technological feature recognition[J]. Computer Engineering and Design, 2011, 32(10):3548-3552(in Chinese). [21] LIU Y. An improved AHP and BP neural network method for service quality evaluation of city bus[J]. International Journal of Computer Applications in Technology, 2018, 58(1):37-44. [22] 熊青春, 王家序, 周青华. 融合机床精度与工艺参数的铣削误差预测模型[J]. 航空学报, 2018, 39(8):421713. XIONG Q C, WANG J X, ZHOU Q H. Prediction model of machining errors based on precision and process parameters of machine tools[J]. Acta Aeronautica et Astronautica Sinica, 2018, 39(8):421713(in Chinese). [23] LU H J, ZHANG H M, MA L H. A new optimization algorithm based on chaos[J]. Journal of Zhejiang University-Science A:Applied Physics & Engineering, 2006, 7(4):539-542. [24] OKAMOTO T, HIRATA H. Global optimization using a multipoint type quasi-chaotic optimization method[J]. Applied Software Computing, 2013, 13(2):1247-1264. [25] 赵燕. 基于遗传算法与评估模型的飞行载荷实测研究[J]. 航空学报, 2014, 35(9):2506-2512. ZHAO Y. Flight load measurement based on genetic algorithm and evaluating model[J]. Acta Aeronautica et Astronautica Sinica, 2014, 35(9):2506-2512(in Chinese). [26] LI Y Q, WANG R X, LIU Y, et al. Satellite range scheduling with the priority constraint:An improved genetic algorithm using a station ID encoding method[J]. Chinese Journal of Aeronautics, 2015, 28(3):789-803. [27] LI J, CHENG J H, SHI J Y, et al. Brief Introduction of back propagation (BP) neural network algorithm and its improvement[J]. Advances in Intelligent and Soft Computing, 2012, 169(2):553-558. [28] 许同乐, 侯蒙蒙, 蔡道勇, 等. FastICA遗传神经网络算法[J]. 北京邮电大学学报, 2014, 37(4):25-28. XU T L,HOU M M,CAI D Y, et al. FastICA genetic neural networks method[J]. Journal of Beijing University of Posts and Telecommunications, 2014, 37(4):25-28(in Chinese). |