[1] McDougall N M, Cumpsty N A, Hynes T P. Stall inception in axial compressors[J]. Journal of Turbomachinery, 1990, 112(1): 116-125.
[2] Day I J. Stall inception in axial flow compressors[J]. Journal of Turbomachinery, 1993, 115(1): 1-9.
[3] Camp T R, Day I J. A study of spike and modal stall phenomena in a low-speed axial compressor[J]. Journal of Turbomachinery, 1998, 120(3): 393-401.
[4] Day I J, Breuer T, Escuret J, et al. Stall inception and the prospects for active control in four high-speed compressors[J]. Journal of Turbomachinery, 1999, 121(1): 18-27.
[5] Wilson A G, Freeman C. Stall inception and development in an axial flow aeroengine[J]. Journal of Turbomachinery, 1994, 116(2): 216-225.
[6] Tan C S, Day I J, Morris S, et al. Spike-type compressor stall inception, detection, and control[J]. Annual Review of Fluid Mechanics, 2010, 42(1): 275-300.
[7] Nenni J P, Ludwig G R. A theory to predict the inception of rotating stall in axial flow compressors, AIAA-1974-528[R]. Reston: AIAA, 1974.
[8] Ludwig G R, Nenni J P. Basic studies of rotating stall in axial flow compressors, AFAPL-TR-79-2083[R]. 1979.
[9] Moore F K, Greitzer E M. A theory of post-stall transients in axial compression systems:part1-2[J]. Journal of Engineering for Gas Turbine and Power, 1986, 108(1): 68-75, 231-239.
[10] Gordon K. Three-dimensional rotating stall inception and effects of rotating tip clearance asymmetry in axial compressors[D].Cambridge:Department of Aeronautics and Astronautics, Massachusetts Institute of Technology, 1998.
[11] Sun X F. On the relationship between the inception of rotating stall and casing treatment[C]//32nd AIAA/ASME/SAE/ASEE Joint Propulsion Conference, 1996.
[12] Liu X H, Sun D K, Sun X F, et al. Flow stability theory for fan/compressors with annular duct and novel casing treatment[J]. Chinese Journal of Aeronautics, 2012, 25(2): 143-154.
[13] Lindau J W, Owen A K. Nonlinear quasi-three-dimensional modeling of rotating stall and surge, AIAA-1997-2772[R]. Reston: AIAA, 1997.
[14] Longley J P. Calculating the flow field behavior of high-speed multi-stage compressors, ASME Paper, GT-97-468[R]. New York: ASME, 1997.
[15] Escuret J F, Garnier V. Numerical simulations of surge and rotating stall in multi-stage axial-flow compressors, AIAA-1994-3202[R]. Reston: AIAA, 1994.
[16] Chima R V. A three-dimensional unsteady CFD model of compressor stability, ASME Paper, GT-2006-90040[R]. New York: ASME, 2006.
[17] Gong Y. A computational model for rotating stall and inlet distortions in multistage compressors[D]. Cambridge: Department of Aeronautics and Astronautics, Massachusetts Institute of Technology, 1999.
[18] Hoying D A. Blade passage flow structure effects on axial compressor rotating stall inception, GTL Report No. 224[R]. Cambridge: Massachusetts Institute of Technology, 1996.
[19] He L. Computational study of rotating-stall inception in axial compressors[J]. Journal of Propulsion and Power, 1997, 13(1): 31-38.
[20] Chen J P, Johnson B, Hathaway M D, et al. Flow characteristics of tip injection on compressor rotating spike via time-accurate simulation[J]. Journal of Propulsion and Power, 2009, 25(3): 678-686.
[21] Tryfonidis M, Etchevers O, Paduano J D, et al. Pre-stall behavior of several high-speed compressors[J]. Journal of Turbomachinery, 1995, 117(1): 625-636.
[22] Weigl H J, Paduano J D, Frechette L G, et al. Active stabilization of rotating stall and surge in a transonic single-stage axial compressor[J]. Journal of Turbomachinery, 1998, 120(4): 625-636.
[23] Bonnaure L P. Modelling high speed multistage compressor stability[D].Cambridge: Department of Aeronautics and Astronautics, Massachusetts Institute of Technology, 1991.
[24] Sun X F, Liu X H, Hou R W, et al. A general theory of flow instability inception in turbomachinery[J]. AIAA Journal, 2013, 51(7): 1675-1687.
[25] Peskin C S. Flow patterns around heart valves: anumerical method[J]. Journal of Computational Physics, 1972, 10(2): 252-271.
[26] Sirovich L. Initial and boundary value problems in dissipative gas dynamics[J]. Physics of Fluids, 1967, 10(1): 24-34.
[27] Denton J D, Dawes W N. Computational fluid dynamics for turbomachinery design[J]. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 1998, 213(2): 107-124.
[28] Xu L. Assessing viscous body forces for unsteady calculations[J]. Journal of Turbomachinery, 2003, 125(2): 425-432.
[29] Yu W W, Wang X Y, Sun X F. Investigation on the theoretical model combined with the novel casting treatment with rotating stall[J]. Journal of Aerospace Power, 2005, 20(5): 873-881. (in Chinese) 于巍巍, 王晓宇, 孙晓峰. 包含处理机匣影响的压气机旋转失速稳定性模型[J]. 航空动力学报, 2005, 20(5): 873-881.
[30] Yu W W, Sun X F. Rotating stall stability theory of the transonic axial compressors/fans[J]. Journal of Aerospace Power, 2005, 20(6): 1018-1027. (in Chinese) 于巍巍, 孙晓峰. 跨声压气机/风扇旋转失速稳定性模型[J]. 航空动力学报, 2005, 20(6): 1018-1027.
[31] Malik M R. Finite-difference solution of the compressible stability eigenvalue problem, NASA CR-3584[R]. Washington, D.C.: NASA, 1982.
[32] Woodley B M, Peake N. Resonant acoustic frequencies of a tandem cascade, part 1:zero relative motion[J]. Journal of Fluid Mechanics, 1999, 393(1): 215-240.
[33] Cooper A J, Parry A B, Peake N. Acoustic resonance in aeroengine intake ducts[J]. Journal of Turbomachinery, 2004, 126(3): 432-441.
[34] Moore R D, Reid L. Performance of single-stage axial-flow transonic compressor with rotor and stator aspect ratio of 1.19 and 1.26,respectively, and with design pressure ratio of 2.05, NASA-TP-1659[R]. Washington, D.C.: NASA, 1980.
[35] Suder K L, Celestina M L. Experimental and computational investigation of the tip clearance flow in a transonic axial compressor rotor[J]. Journal of Turbomachinery, 1996, 118(2): 218-229.
[36] Denton J D. Lessons from rotor 37[J]. Journal of Thermal Science, 1997, 6(1): 1-13.
[37] Liu X H, Hou R W, Sun D K, et al. Flow instability inception model of compressors based on eigenvalue theory[C]//48th AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit, 2012.
[38] Reid L, Moore R D. Performance of single-stage axial-flow transonic compressor with rotor and stator aspect ratios of 1.19 and 1.26, respectively, and with design pressure ratio of 1.82, NASA TP-1338[R].Washington, D.C.: NASA, 1978. |