[1] Zhang Y H, Wang L D, Zhan X Q, et al. The new advancement and trend of inertial navigation technology. Shipbuilding of China, 2008, 49(S1): 134-144. (in Chinese) 张炎华, 王立端, 战兴群, 等. 惯性导航技术的新进展及发展趋势. 中国造船, 2008, 49(S1): 134-144.
[2] Xu Q. The current status and development trends of inertial technology in China.2010 International Symposium on Inertial Technology and Navigation. 2010: 1-5.
[3] Qin Y Y. Current status and development trend of international inertial instrument. Aeronautical Manufacturing Technology, 2008(9): 68-69. (in Chinese) 秦永元. 国际惯性器件发展现状和趋势. 航空制造技术, 2008(9): 68-69.
[4] Zhu B, Zheng J. Navigation and guidance technology development in America. Aerospace China, 2008(1): 43-45. (in Chinese) 祝彬, 郑娟. 美国惯性导航与制导技术的新发展. 中国航天, 2008(1): 43-45.
[5] Packard R E. Principles of superfluid-helium gyroscops. Physical Review B, 1992, 46(6): 3540-3549.
[6] Clauser J F. Ultra high sensitivity accelerometers and gyroscopes using neutral atom matter-wave interferometry. Physica B, 1988, 151(1-2): 262-272.
[7] Gustavson T L, Bouyer P, Kasevich M A. Precision rotation measurements with an atom interferometer gyroscope. Physical Review Letters, 1997, 78(11): 2046-2049.
[8] Xie Z, Liu J Y, Lai J Z. Research status of new high-precision gyroscope based on cryogenic physical effects. Journal of Chinese Inertial Technology, 2007, 15(5): 606-611. (in Chinese) 谢征, 刘建业, 赖际舟. 基于低温物理效应的新型超高精度陀螺仪研究综述. 中国惯性技术学报, 2007, 15(5): 606-611.
[9] Zeng J Y. Quantum mechanics. Beijing: Science Press, 2000. (in Chinese) 曾谨言. 量子力学. 北京: 科学出版社, 2000.
[10] Davis J C, Packard R E. Superfluid 3He Josephson weak links. Reviews of Modern Physics, 2002, 74(3): 741-773.
[11] Hoskinson E, Packard R E, Haard T M. Oscillatory motion: quantum whistling in superfluid helium-4. Nature, 2005, 443(7024): 376.
[12] Hoskinson E, Sato Y, Packard R. Superfluid 4He interferometer operating near 2K. Physical Review B, 2006, 74(10): 100509.1-100509.4.
[13] Sato Y, Hoskinson E, Packard R. Simulations of phase slippage in an aperture array. Journal of Low Temperature Physics, 2007, 149(5): 222-229.
[14] Sato Y. Experiments using 4He weak links. Berkeley: University of California, 2007.
[15] Cornell E A, Wleman C E. Bose-Einstein condensation in a dilute gas; the first 70 years and some recent experiments. Uspekhi Fizicheskikh Nauk, 2003, 173(12): 1320-1339.
[16] Xiao R P, Yang X N. January 1938: the discovery of superfluid. Modern Physics, 2007, 19(1): 59-60. (in Chinese) 萧如珀, 杨信男. 1938年1月: 超流体的发现. 现代物理知识, 2007, 19(1): 59-60.
[17] Stringari S. Superfluid gyroscope with cold atomic gases. Physics Review Letters, 2001, 86(21): 4725-4728.
[18] Hoskinson E, Sato Y, Packard R E, et al. Transition from phase slips to the Josephson effect in a superfluid 4He weak link. Nature Physics, 2006, 2(1): 23-26.
[19] Hodby E, Hopkins S A, Hechenblaikner G, et al. Experimental observation of a superfluid gyroscope in a dilute Bose-Einstein condensate. Physics Review Letters, 2003, 91(9): 090403.1-090403.4.
[20] Hallwood D W, Burnett K, Dunningham J. Macroscopic superpositions of superfluid flows. New Journal of Physics, 2006, 8(180): 1-8.
[21] Schwab K, Bruckner N, Packard R. Detection of absolute rotation using superfluid 4He. Low Temperature Physics, 1998, 24(2): 102-104.
[22] Packard R. The role of the Josephson-Anderson equation in superfluid helium. Reviews of Modern Physics, 1998, 70(2): 641-651.
[23] Bruckner N, Packard R. Large area multiturn superfluid phase slip gyroscope. Journal of Applied Physics, 2003, 93(3): 1798-1805.
[24] Sato Y, Joshi A, Packard R. Direct measurement of quantum phase gradients in superfluid 4He flow. Physical Review Letters, 2007, 98: 195302.1-195302.3.
[25] Packard R. Principles of a phase slip gyroscope.(1999-10-25).http://www.physics.berkeley.edu/research/packard/current_research/nielsweb/index.htm.
[26] Song B Z, Zhao W, Xie Z, et al. Modeling of new quantum whistling superfluid cryogenic gyroscope. Journal of Applied Sciences, 2009, 27(3): 321-325. (in Chinese) 宋宝璋, 赵伟, 谢征, 等. 新型低温哨音超流体陀螺模型. 应用科学学报, 2009, 27(3): 321-325.
[27] Xie Z, Liu J Y, Zhao W, et al. The exploratory research of a novel gyroscope based on superfluid Josephson effect.2010 IEEE/ION Position Location and Navigation Symposium (PLANS). 2010: 14-19.
[28] Xie Z, Liu J Y, Zhao W, et al. Analysis and simulation of measure range of double weak-links structured high sensitivity superfluid gyroscope. Journal of Chinese Inertial Technology, 2011, 19(1): 11-15. (in Chinese) 谢征, 刘建业, 赵伟, 等. 双弱连接结构的高精度超流体陀螺的量程分析. 中国惯性技术学报, 2011, 19(1): 11-15.
[29] Sato Y, Joshi A, Packard R. Flux locking a superfluid interferometer. Applied Physics Letters, 2007, 91(7): 074107.1-074107.3.
[30] Sato Y. Fiske-amplified superfluid interferometry. Physical Review B, 2010, 81(17): 172502-1-172502-4.
[31] Packard R. Superfluid helium 4 weak links and application. (2008-08-15).http//www.physics.berkeley.edu/research/packard/current_research/4He/4He_main.html.
[32] Whang D, Jin S, Lieber C M, et al. Nanolithography using hierarchically assembled nanowire masks. Nano Letters, 2003, 3(7): 951-954.
[33] Geissler M, Xia Y. Patterning: principles and some new developments. Advanced Materials, 2004, 16(15): 1249-1269.
[34] Chou S Y, Krauss P R, Renstrom P J. Imprint of sub-25 nm vias and trenches in polymers. Applied Physics Letters, 1995, 67(21): 3114.
[35] Hoch D W. Design and test of a 1.8K liquid helium refrigerator. Madison: University of Wisconsin-Madison, 2004. |