Acta Aeronautica et Astronautica Sinica ›› 2024, Vol. 45 ›› Issue (23): 330372.doi: 10.7527/S1000-6893.2024.30372
• Electronics and Electrical Engineering and Control • Previous Articles
Yi GU1,2, Xiucong SUN2, Liming FAN3, Shenggang LIU2, Guohua WU4()
Received:
2024-03-12
Revised:
2024-04-15
Accepted:
2024-05-06
Online:
2024-06-04
Published:
2024-05-25
Contact:
Guohua WU
E-mail:guohuawu@csu.edu.cn
Supported by:
CLC Number:
Yi GU, Xiucong SUN, Liming FAN, Shenggang LIU, Guohua WU. A rapid satellite-ground coverage analysis method based on elevation view element model[J]. Acta Aeronautica et Astronautica Sinica, 2024, 45(23): 330372.
Table 2
Calculation of visible window at Point G1
半锥角/(°) | 轨迹相交法/s | STK/s | 误差/s | ||||
---|---|---|---|---|---|---|---|
起始时间 | 结束时间 | 时长 | 起始时间 | 结束时间 | 时长 | ||
80 | 28 889.737 1 | 29 317.219 9 | 427.482 8 | 28 889.728 7 | 29 317.167 4 | 427.438 7 | 0.030 4 |
34 671.085 9 | 35 133.833 6 | 462.747 7 | 34 671.062 8 | 35 133.797 9 | 462.735 1 | 0.029 4 | |
77 507.261 3 | 78 048.524 0 | 541.262 7 | 77 507.219 3 | 78 048.459 7 | 541.240 4 | 0.053 2 | |
70 | 29 017.106 4 | 29 188.678 6 | 171.572 2 | 29 017.116 7 | 29 188.622 1 | 171.505 4 | 0.033 4 |
34 781.673 1 | 35 021.4570 | 239.783 9 | 34 781.638 2 | 35 021.434 7 | 239.796 5 | 0.028 6 | |
77 592.132 5 | 77 965.1597 | 373.027 2 | 77 592.081 0 | 77 965.092 3 | 373.011 2 | 0.059 5 |
Table 3
Calculation of visible window at Point G2
半锥角/(°) | 轨迹相交法/s | STK/s | 误差/s | ||||
---|---|---|---|---|---|---|---|
起始时间 | 结束时间 | 时长 | 起始时间 | 结束时间 | 时长 | ||
80 | 11 969.795 7 | 12 165.460 8 | 195.665 1 | 11 969.871 2 | 12 165.407 5 | 195.536 3 | 0.064 4 |
17 565.698 9 | 18 050.128 1 | 484.429 2 | 17 565.698 4 | 18 050.096 9 | 484.398 4 | 0.015 9 | |
23 334.699 4 | 23 876.949 4 | 542.250 0 | 23 334.695 9 | 23 876.924 4 | 542.228 5 | 0.014 2 | |
29 315.759 6 | 29 624.284 1 | 308.524 5 | 29 315.761 6 | 29 624.248 9 | 308.487 3 | 0.018 6 | |
65 440.131 6 | 65 800.174 9 | 360.043 3 | 65 440.075 9 | 65 800.107 3 | 360.031 3 | 0.061 7 | |
71 203.896 4 | 71 750.191 4 | 546.295 0 | 71 203.842 7 | 71 750.121 7 | 546.279 0 | 0.061 7 | |
77 035.120 3 | 77 502.009 3 | 466.889 0 | 77 035.082 2 | 77 501.926 3 | 466.844 1 | 0.060 5 | |
82 938.299 9 | 83 068.779 1 | 130.479 2 | 82 938.364 5 | 83 068.582 0 | 130.217 5 | 0.130 9 | |
70 | 17 666.441 5 | 17 948.402 2 | 281.960 7 | 17 666.440 9 | 17 948.371 2 | 281.930 3 | 0.015 8 |
23 420.296 9 | 23 790.018 1 | 369.721 2 | 23 420.285 8 | 23 789.994 7 | 369.708 9 | 0.017 3 | |
71 289.611 9 | 71 665.792 4 | 376.180 5 | 71 289.564 9 | 71 665.734 9 | 376.170 0 | 0.052 2 | |
77 143.714 8 | 77 394.359 6 | 250.644 8 | 77 143.683 5 | 77 394.283 3 | 250.599 9 | 0.053 8 |
Table 4
Calculation results of visible window for Point G1 point with conical sensor
半锥角/(°) | 自适应搜索求根法/s | STK/s | 误差/s | |||||
---|---|---|---|---|---|---|---|---|
起始时间 | 结束时间 | 时长 | Time | 起始时间 | 结束时间 | 时长 | ||
60 | 28 979.255 2 | 29 224.194 1 | 244.939 0 | 0.547 | 28 979.310 1 | 29 224.140 5 | 244.830 4 | 0.054 3 |
34 750.741 2 | 35 049.974 1 | 299.232 9 | 34 750.762 0 | 35 049.959 1 | 299.197 0 | 0.017 9 | ||
77 573.325 8 | 77 986.205 0 | 412.879 2 | 77 573.337 2 | 77 986.193 5 | 412.856 3 | 0.011 5 | ||
65 | 28 952.949 3 | 29 253.354 3 | 300.405 0 | 0.635 | 28 952.935 8 | 29 253.334 6 | 300.398 8 | 0.016 6 |
34 729.031 7 | 35 074.880 1 | 345.848 4 | 34 728.994 2 | 35 074.870 5 | 345.876 3 | 0.023 5 | ||
77 554.628 1 | 78 002.008 3 | 447.380 2 | 77 554.573 1 | 78 001.958 1 | 447.385 1 | 0.052 6 |
Table 5
Calculation results of visible window for Point G1 with rectangular sensor
半锥角/(°) | 自适应搜索求根法/s | STK/s | 误差/s | |||||
---|---|---|---|---|---|---|---|---|
起始时间 | 结束时间 | 时长 | Time | 起始时间 | 结束时间 | 时长 | ||
55/45 | 28 983.205 4 | 29 002.119 0 | 18.913 6 | 0.623 | 28 983.207 4 | 29 002.092 3 | 18.884 9 | 0.014 4 |
29 200.959 8 | 29 220.059 8 | 19.099 9 | 29 200.985 1 | 29 220.056 2 | 19.071 2 | 0.014 4 | ||
34 783.412 4 | 35 017.392 1 | 233.979 7 | 34 783.412 9 | 35 017.392 6 | 233.979 7 | 0.000 5 | ||
77 678.340 6 | 77 881.274 0 | 202.933 4 | 77 678.345 3 | 77 881.266 0 | 202.920 7 | 0.006 3 | ||
65/55 | 28 952.949 3 | 29 253.354 3 | 300.405 0 | 0.592 | 28 952.935 8 | 29 253.334 6 | 300.398 8 | 0.016 6 |
34 729.031 7 | 35 074.880 1 | 345.848 4 | 34 728.994 2 | 35 074.870 5 | 345.876 3 | 0.023 5 | ||
77 623.547 9 | 77 935.989 9 | 312.441 9 | 77 623.550 5 | 77 935.986 2 | 312.435 7 | 0.003 1 |
Table 6
Calculation results of brute-force method
半锥角/(°) | 暴力法计算结果/s | ||||
---|---|---|---|---|---|
起始时间 | 结束时间 | 起始误差 | 结束误差 | Time | |
圆锥60 | 28 979.249 3 | 29 224.149 3 | -0.060 8 | 0.008 8 | 5.744 |
34 750.731 7 | 35 049.931 7 | -0.030 3 | -0.027 4 | ||
77 573.228 1 | 77 986.128 1 | -0.109 1 | -0.065 4 | ||
矩形55/45 | 28 983.149 3 | 29 002.049 3 | -0.058 1 | -0.043 0 | 6.164 |
29 200.949 3 | 29 220.049 3 | -0.035 8 | -0.006 9 | ||
34 783.331 7 | 35 017.331 7 | -0.081 2 | -0.060 9 | ||
77 678.328 1 | 77 881.228 1 | -0.017 2 | -0.037 9 | ||
圆锥65 | 28 952.949 3 | 29 253.249 3 | 0.013 5 | -0.085 3 | 5.570 |
34 729.031 7 | 35 074.731 7 | 0.037 5 | -0.138 8 | ||
77 554.628 1 | 78 001.828 1 | 0.055 0 | -0.130 0 | ||
矩形65/55 | 28 952.949 3 | 29 253.2493 | 0.013 5 | -0.085 3 | 5.794 |
34 729.031 7 | 35 074.731 7 | 0.037 5 | -0.138 8 | ||
77 623.528 1 | 77 935.9281 | -0.022 4 | -0.058 1 |
Table 7
Calculation results of sensitivity analysis
起始时间/s | 结束时间/s | 时长/s | Time/s | 采样点数 | |
---|---|---|---|---|---|
0.05 | 28 983.208 7 | 29 002.114 5 | 18.905 9 | 0.345 | 92 |
29 200.957 9 | 29 220.056 5 | 19.098 7 | |||
34 783.420 3 | 35 017.391 6 | 233.971 3 | |||
77 678.343 8 | 77 881.273 5 | 202.929 7 | |||
0.01 | 28 983.205 4 | 29 002.119 0 | 18.913 6 | 0.623 | 429 |
29 200.959 8 | 29 220.059 8 | 19.099 9 | |||
34 783.412 4 | 35 017.392 1 | 233.979 7 | |||
77 678.340 6 | 77 881.274 0 | 202.933 4 | |||
0.005 | 28 983.205 4 | 29 002.119 0 | 18.913 6 | 1.033 | 858 |
29 200.959 8 | 29 220.059 8 | 19.099 9 | |||
34 783.412 4 | 35 017.392 1 | 233.979 7 | |||
77 678.340 6 | 77 881.274 0 | 202.933 4 | |||
0.001 | 28 983.205 4 | 29 002.119 0 | 18.913 6 | 4.578 | 4 301 |
29 200.959 8 | 29 220.059 8 | 19.099 9 | |||
34 783.412 4 | 35 017.392 1 | 233.979 7 | |||
77 678.340 6 | 77 881.274 0 | 202.933 4 |
1 | 李夏苗, 陈新江, 伍国华, 等. 考虑断点续传的中继卫星调度模型及启发式算法[J]. 航空学报, 2019, 40(11): 323233. |
LI X M, CHEN X J, WU G H, et.al. Relay satellite scheduling model and heuristic algorithm considering breakpoint continuation[J]. Acta Aeronautica et Astronautica Sinica, 2019, 40(11): 323233 (in Chinese). | |
2 | WU G, LUO Q, DU X, et al. Ensemble of metaheuristic and exact algorithm based on the divide-and-conquer framework for multi-satellite observation scheduling[J]. IEEE Transactions on Aerospace and Electronic Systems, 2022, 58(5): 4396-4408. |
3 | GU Y, HAN C, CHEN Y, et al. Large region targets observation scheduling by multiple satellites using resampling particle swarm optimization[J]. IEEE Transactions on Aerospace and Electronic Systems, 2023, 59(2): 1800-1815. |
4 | ORTORE E, CINELLI M, CIRCI C. A ground track-based approach to design satellite constellations[J]. Aerospace Science and Technology, 2017, 69: 458-464. |
5 | HAN C, BAI S, ZHANG S, et al. Visibility optimization of satellite constellations using a hybrid method[J]. Acta Astronautica, 2019, 163: 250-263. |
6 | WANG X W, SONG G P, LEUS R, et al. Robust earth observation satellite scheduling with uncertainty of cloud coverage[J]. IEEE Transactions on Aerospace and Electronic Systems, 2020, 56(3): 2450-2461. |
7 | HAN C, GU Y, WU G H, et al. Simulated annealing-based heuristic for multiple agile satellites scheduling under cloud coverage uncertainty[J]. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 2023, 53(5): 2863-2874. |
8 | 孙刚, 彭双, 陈浩, 等. 面向测控数传资源一体化场景的卫星地面站资源多目标优化方法[J]. 航空学报, 2022, 43(9): 326114. |
SUN G, PENG S, CHEN H, et.al. A multi-objective optimization method of satellite ground station resources for the integration scenario of TTC, data and transmission resources[J]. Acta Aeronautica et Astronautica Sinica, 2022, 43 (9): 326114 (in Chinese). | |
9 | ULYBYSHEV Y. Satellite constellation design for complex coverage[J]. Journal of Spacecraft and Rockets, 2008, 45(4): 843-849. |
10 | 伍国华, 王天宇. 基于自适应模拟退火的大规模星座测控资源调度算法[J]. 航空学报, 2023, 44(12): 327759. |
WU G H, WANG T Y. Large-scale constellation TT & C resource scheduling algorithm based on adaptive simulated annealing[J]. Acta Aeronautica et Astronautica Sinica, 2023, 44(12): 327759 (in Chinese). | |
11 | ZHANG J R, CAI Y F, XUE C B, et al. LEO mega constellations: Review of development, impact, surveillance, and governance[J]. Space: Science and Technology, 2022, 2022: 9865174. |
12 | MORRISON JJ. A system of sixteen synchronous satellites for worldwide navigation and surveillance[R]. Washington, D.C.: Federal Aviation Administration, 1973. |
13 | SONG Z M, DAI G M, WANG M C, et al. A novel grid point approach for efficiently solving the constellation-to-ground regional coverage problem[J]. IEEE Access, 2018, 6: 44445-44458. |
14 | ALFANO S, NEGRON JR D, MOORE JL. Rapid determination of satellite visibility periods[R]. Air Force Academy Colorado Springs Co, 1992. |
15 | HAN C, GAO X J, SUN X C. Rapid satellite-to-site visibility determination based on self-adaptive interpolation technique[J]. Science China Technological Sciences, 2017, 60(2): 264-270. |
16 | GU Y, HAN C, WANG X W. A Kriging based framework for rapid satellite-to-site visibility determination[C]∥ 2019 IEEE 10th International Conference on Mechanical and Aerospace Engineering (ICMAE). Piscataway: IEEE Press, 2019: 262-267. |
17 | ULYBYSHEV Y. Geometric analysis and design method for discontinuous coverage satellite constellations[J]. Journal of Guidance, Control, and Dynamics, 1999, 36(1): 92-99. |
18 | ULYBYSHEV Y. General analysis method for discontinuous coverage satellite constellations[J]. Journal of Guidance, Control, and Dynamics, 2015, 38(12): 2475-2483. |
19 | DAI G M, CHEN X Y, WANG M C, et al. Analysis of satellite constellations for the continuous coverage of ground regions[J]. Journal of Spacecraft and Rockets, 2017, 54(6): 1294-1303. |
20 | HAN C, ZHANG Y J, BAI S Z. Geometric analysis of ground-target coverage from a satellite by field-mapping method[J]. Journal of Guidance, Control, and Dynamics, 2021, 44(8): 1469-1480. |
21 | ZHANG Y J, HAN C, SUN W, et al. Geometric-based method for regional-target coverage analysis[J]. IEEE Transactions on Aerospace and Electronic Systems, 2023, 59(3): 2252-2265. |
22 | ZHANG Y J, BAI S Z, HAN C. Geometric analysis of a constellation with a ground target[J]. Acta Astronautica, 2022, 191: 510-521. |
23 | WANG B D, WANG H, JIN Z H. An efficient algorithm for infrared earth sensor with a large field of view[J]. Sensors, 2022, 22(23): 9409. |
24 | DENG H J, WANG H, LIU Y, et al. Large field-of-view infrared horizon sensor attitude correction for earth’s oblateness[J]. Journal of Guidance Control Dynamics, 2023, 46(10): 2024-2032. |
25 | WANG X W, GU Y, WU G H, et al. Robust scheduling for multiple agile Earth observation satellites under cloud coverage uncertainty[J]. Computers & Industrial Engineering, 2021, 156: 107292. |
26 | LEE J W, LEE J W, KIM T W, et al. Satellite over satellite (SOS) network: A novel concept of hierarchical architecture and routing in satellite network[C]∥ Proceedings 25th Annual IEEE Conference on Local Computer Networks. Piscataway: IEEE Press, 2000: 392-399. |
27 | SHARMA S K, CHATZINOTAS S, OTTERSTEN B. Satellite cognitive communications: interference modeling and techniques selection[C]∥ 2012 6th Advanced Satellite Multimedia Systems Conference (ASMS) and 12th Signal Processing for Space Communications Workshop (SPSC). Piscataway: IEEE Press, 2012: 111-118. |
28 | CAKAJ S, KAMO B, LALA A, et al. The coverage analysis for low earth orbiting satellites at low elevation[J]. International Journal of Advanced Computer Science and Applications, 2014, 5(6): 1-5. |
29 | CRISP N H, ROBERTS P C E, LIVADIOTTI S, et al. The benefits of very low earth orbit for earth observation missions[J]. Progress in Aerospace Sciences, 2020, 117: 100619. |
30 | TEUNISSEN P J G, ODOLINSKI R, ODIJK D. Instantaneous BeiDou+GPS RTK positioning with high cut-off elevation angles[J]. Journal of Geodesy, 2014, 88(4): 335-350. |
[1] | Zhi ZHANG, Han YUAN, Wanqing ZHANG. Powered deceleration guidance method based on gravity-turn analytical solutions [J]. Acta Aeronautica et Astronautica Sinica, 2023, 44(23): 628483-628483. |
[2] | LI Kebo, LIAO Xuanping, LIANG Yan'gang, LI Chaoyong, CHEN Lei. Guidance strategy with impact angle constraints based on pure proportional navigation [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2020, 41(S2): 724277-724277. |
[3] | LI Baoyu, ZHANG Leigang, QIU Qunhai, YU Xiongqing. An advanced first order and second moment method based on gradient analytical solution of Kriging surrogate model [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2019, 40(5): 222629-222629. |
[4] | XU Qi, WU Zhen. A Reddy-type theory of functionally graded beam considering transverse normal thermal strain [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2017, 38(8): 220918-220918. |
[5] | GU Jie, ZHANG Shuguang, YANG Fan, WANG Baoyin. Approximate analytical analysis for phugoid characteristic of reentry vehicles and its applications [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2017, 38(10): 121174-121174. |
[6] | FU Yu, CHEN Gong, LU Baogang, GUO Jifeng, CUI Naigang. A Vacuum Adaptive Iterative Guidance Method of Launch Vehicle Based on Optimal Analytical Solution [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2011, 32(9): 1696-1704. |
[7] | ZANG Qing-lai;ZHANG Xing;WU Guo-xun. New Model and New Method of Stress Analysis about Glued Joints [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2006, 27(6): 1051-1057. |
[8] | Zou Guiping;Tang Limin. A SEMI-ANALYTICAL SOLUTION FOR LAMINATED COMPOSITE PLATES IN HAMILTON SYSTEM [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 1994, 15(7): 794-799. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
Address: No.238, Baiyan Buiding, Beisihuan Zhonglu Road, Haidian District, Beijing, China
Postal code : 100083
E-mail:hkxb@buaa.edu.cn
Total visits: 6658907 Today visits: 1341All copyright © editorial office of Chinese Journal of Aeronautics
All copyright © editorial office of Chinese Journal of Aeronautics
Total visits: 6658907 Today visits: 1341