Acta Aeronautica et Astronautica Sinica ›› 2024, Vol. 45 ›› Issue (6): 629368-629368.doi: 10.7527/S1000-6893.2023.29368
• Special Topic: New Conceptual Aerodynamic Layout Design for Aircraft • Previous Articles Next Articles
Pengbo SUN, Zhou ZHOU(), Xu LI, Kelei WANG
Received:
2023-07-26
Revised:
2023-08-24
Accepted:
2023-09-15
Online:
2024-03-25
Published:
2023-09-21
Contact:
Zhou ZHOU
E-mail:zhouzhou@nwpu.edu.cn
Supported by:
CLC Number:
Pengbo SUN, Zhou ZHOU, Xu LI, Kelei WANG. Influence analysis and optimization of distribution-propulsion-wing parameters with target aerodynamic characteristics[J]. Acta Aeronautica et Astronautica Sinica, 2024, 45(6): 629368-629368.
1 | REEL J L, BALTADJIEV N D. Using computational fluid dynamics to generate complex aerodynamic database for VTOL aircraft[C]∥Proceedings of the 2018 Applied Aerodynamics Conference. Reston: AIAA, 2018. |
2 | KIM H D, PERRY A T, ANSELL P J. A review of distributed electric propulsion concepts for air vehicle technology[C]∥2018 AIAA/IEEE Electric Aircraft Technologies Symposium (EATS). Piscataway: IEEE Press, 2018: 1-21. |
3 | 朱炳杰, 杨希祥, 宗建安, 等. 分布式混合电推进飞行器技术[J]. 航空学报, 2022, 43(7): 025556. |
ZHU B J, YANG X X, ZONG J A, et al. Review of distributed hybrid electric propulsion aircraft technology[J]. Acta Aeronautica et Astronautica Sinica, 2022, 43(7): 025556 (in Chinese). | |
4 | KERHO M. Turboelectric distributed propulsion test bed aircraft: NASA LEARN Phase I Final report: NNX13AB9⁃2A[R]. El Segundo: Rolling Hills Research Corporation, 2013. |
5 | KERHO M. Turboelectric distributed propulsion test bed aircraft: NASA LEARN Phase Ⅱ Final report: NNX14AF44A[R]. El Segundo: Rolling Hills Research Corporation, 2015. |
6 | SCHILTGEN B, GREEN M, HALL D, et al. Split-wing propulsor design and analysis for electric distributed propulsion[C]∥Proceedings of the 49th AIAA Aerospace Sciences Meeting including the New Horizons Forum and Aerospace Exposition. Reston: AIAA, 2011. |
7 | PAPATHAKIS V H. Inlet shape considerations for split-wing electric distributed propulsion[D]. San Luis Obispo: California Polytechnic State University, 2015: 20-63. |
8 | LAUER M G, ANSELL P J. A parametrization framework for multi-element airfoil systems using Bézier curves[C]∥Proceedings of the AIAA Aviation 2022 Forum. Reston: AIAA, 2022. |
9 | LAUER M G, ANSELL P J. Aerodynamic shape optimization of a transonic, propulsion-airframe-integrated airfoil system[C]∥Proceedings of the AIAA Aviation 2022 Forum. Reston: AIAA, 2022. |
10 | 夏济宇, 周洲, 徐德, 等. 矢量电推进系统的气动-推进耦合模型[J]. 航空学报, 2023, 44(11): 140-152. |
XIA J Y, ZHOU Z, XU D, et al. Aerodynamic/propulsion coupling model of vector electric propulsion system[J]. Acta Aeronautica et Astronautica Sinica, 2023, 44(11): 140-152 (in Chinese). | |
11 | GUO J H, ZHOU Z. Multi-objective design of a distributed ducted fan system[J]. Aerospace, 2022, 9(3): 165. |
12 | 王科雷, 周洲, 郭佳豪, 等. 分布式动力翼前飞状态动力/气动耦合特性分析[J]. 航空学报, 2024, 45(5): 128643. |
WANG K L, ZHOU Z, GUO J H, et al. Analysis on the propulsive/aerodynamic coupled characteristics of the distributed-propulsion-wing during forward flight[J]. Acta Aeronautica et Astronautica Sinica, 2024, 45(5): 128643 (in Chinese). | |
13 | 张星雨, 高正红, 雷涛, 等. 分布式电推进飞机气动-推进耦合特性地面试验[J]. 航空学报, 2022, 43(8): 125389. |
ZHANG X Y, GAO Z H, LEI T, et al. Ground test on aerodynamic-propulsion coupling characteristics of distributed electric propulsion aircraft[J]. Acta Aeronautica et Astronautica Sinica, 2022, 43(8): 125389 (in Chinese). | |
14 | KIM H J, RHO O H. Aerodynamic design of transonic wings using the target pressure optimization approach[J]. Journal of Aircraft, 1998, 35(5): 671-677. |
15 | ANDERSON J D. 空气动力学基础[M]. 5版. 杨永, 宋文萍, 张正科, 等, 译. 北京: 航空工业出版社, 2014: 319-338. |
ANDERSON J D. Fundamentals of aerodynamics [M]. 5th ed. YANG Y, SONG W P, ZHANG Z K, et al, translated. Beijing: Aviation Industry Press, 2014: 319-338 (in Chinese). | |
16 | KATZ J, PLOTKIN A. Low-speed aerodynamics[M]. Cambridge: Cambridge University Press, 2010:76-79, 284-288. |
17 | 李旭, 周洲, 郭佳豪, 等. 二维射流中翼型气动特性计算与分析[J]. 西北工业大学学报, 2022, 40(2): 243-252. |
LI X, ZHOU Z, GUO J H, et al. Calculation and analysis of aerodynamic characteristics for airfoils immersed in two-dimensional jet flow[J]. Journal of Northwestern Polytechnical University, 2022, 40(2): 243-252 (in Chinese). | |
18 | SHOLLENBERGER C A. Analysis of the interaction of jets and airfoils in two dimensions[J]. Journal of Aircraft, 1973, 10(5): 267-273. |
19 | SHOLLENBERGER C A. An investigation of a two-dimensional propulsive lifting system: NASA- CR-2250 [R]. Washington, D.C.: NASA, 1973. |
20 | KULFAN B M. Universal parametric geometry representation method[J]. Journal of Aircraft, 2008, 45(1): 142-158. |
21 | LANE K, MARSHALL D. Inverse airfoil design utilizing CST parameterization[C]∥Proceedings of the 48th AIAA Aerospace Sciences Meeting Including the New Horizons Forum and Aerospace Exposition. Reston: AIAA, 2010. |
22 | GRUNWALD K J, GOODSON K W. Aerodynamic loads on an isolated shrouded-propeller configuration for angles of attack from-10 to 110: NASA TECHNICAL NOTE D-995[R]. Langley: NASA, 1962. |
23 | WU M M, HAN Z H, NIE H, et al. A transition prediction method for flow over airfoils based on high-order dynamic mode decomposition[J]. Chinese Journal of Aeronautics, 2019, 32(11): 2408-2421. |
24 | MALONE J B, NARRAMORE J C, SANKAR L N. Airfoil design method using the Navier-Stokes equations[J]. Journal of Aircraft, 1991, 28(3): 216-224. |
25 | 张乐. 飞翼布局耦合进排气的气动与隐身综合设计研究[D]. 西安: 西北工业大学, 2016: 89-90. |
ZHANG L. Research on integrated design of aerodynamic and stealthy performance with intake and exhaust for flying-wing layout[D]. Xi’an: Northwestern Polytechnical University, 2016: 89-90 (in Chinese). |
[1] | Haifeng WANG, Kunpeng LIU, Hongxin JIANG, Chenxi DU. Aerodynamic optimization method of propeller multi⁃design points and variable pitch angle strategy [J]. Acta Aeronautica et Astronautica Sinica, 2024, 45(9): 528831-528831. |
[2] | Kelei WANG, Zhou ZHOU, Jiahao GUO, Minghao LI. Propulsive/aerodynamic coupled characteristics of distributed-propulsion-wing during forward flight [J]. Acta Aeronautica et Astronautica Sinica, 2024, 45(2): 128643-128643. |
[3] | Qingfeng ZHAO, Zhou ZHOU, Minghao LI, De XU. Propulsion/aerodynamic coupling modeling for distributed-propulsion-wing with induced wing configuration [J]. Acta Aeronautica et Astronautica Sinica, 2024, 45(10): 129252-129252. |
[4] | Huan ZHAO, Zhenghong GAO, Lu XIA. Aerodynamic shape design optimization method based on novel high⁃dimensional surrogate model [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2023, 44(5): 126924-126924. |
[5] | Hongyang LIU, Chao SONG, Xiao LUO, Zhu ZHOU, Guangliang LYU. Inverse design of pressure distribution for natural laminar flow nacelle considering 3D flow effects [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2023, 44(5): 126862-126862. |
[6] | Chaoyu LIU, Feng QU, Di SUN, Chuanzhen LIU, Zhansen QIAN, Junqiang BAI. Discretized adjoint based aerodynamic optimization design for hypersonic osculating-cone waverider [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2023, 44(4): 126664-126664. |
[7] | Yiran GU, Jiangtao HUANG, Shusheng CHEN, Deyuan LIU, Zhenghong GAO. Sonic boom inversion technology based on inverse augmented Burgers equation [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2023, 44(2): 626258-626258). |
[8] | Jiehua TIAN, Di SUN, Feng QU, Junqiang BAI. Airfoil parameterization method based on CST⁃GAN [J]. Acta Aeronautica et Astronautica Sinica, 2023, 44(18): 128280-128280. |
[9] | LUO Jiajie, SONG Wenbin. Nested collaborative optimization of laminar wing and its high-lift devices [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2022, 43(8): 125377-125377. |
[10] | GAO Chang, LI Zhengzhou, HUANG Jiangtao, HE Yuanyuan, WU Yingchuan, LE Jialing, GUI Feng. High-accuracy aerodynamic optimization of hypersonic vehicles based on continuous adjoint [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2021, 42(7): 124490-124490. |
[11] | SHI Lei, YANG Guang, DING Guanghua, LIN Wenjun. Fine maintenance of an eroded fan rotor and related flow characteristics analysis [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2020, 41(9): 423446-423446. |
[12] | LI Chunna, ZHANG Yangkang. An efficient adaptive global optimization method suitable for aerodynamic optimization [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2020, 41(5): 623352-623352. |
[13] | LIU Fengbo, JIANG Cheng, MA Tuliang, LIANG Yihua. Aerodynamic optimization design of large civil aircraft using pressure distribution inverse design method based on discrete adjoint [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2020, 41(5): 623372-623372. |
[14] | CHEN Xiyuan, SHAO Ziyan, YANG Jianzhong. Equivalence strategy for aircraft cargo compartment smoke based on inverse design [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2020, 41(11): 123991-123991. |
[15] | ZHANG Xinshuai, LIU Jun, LUO Shibin. An improved multi-objective cuckoo search algorithm for airfoil aerodynamic optimization design [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2019, 40(6): 122550-122550. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
Address: No.238, Baiyan Buiding, Beisihuan Zhonglu Road, Haidian District, Beijing, China
Postal code : 100083
E-mail:hkxb@buaa.edu.cn
Total visits: 6658907 Today visits: 1341All copyright © editorial office of Chinese Journal of Aeronautics
All copyright © editorial office of Chinese Journal of Aeronautics
Total visits: 6658907 Today visits: 1341