1 |
BRELJE B J, MARTINS J R R A. Electric, hybrid, and turboelectric fixed-wing aircraft: A review of concepts, models, and design approaches[J]. Progress in Aerospace Sciences, 2019, 104: 1-19.
|
2 |
WANG J X, LI Y Z, LIU X D, et al. Recent active thermal management technologies for the development of energy-optimized aerospace vehicles in China[J]. Chinese Journal of Aeronautics, 2021, 34(2): 1-27.
|
3 |
屠敏, 袁耿民, 薛飞, 等. 综合热管理在先进战斗机系统研制中的应用[J]. 航空学报, 2020, 41(6): 523629.
|
|
TU M, YUAN G M, XUE F, et al. Application of integrated thermal management in development of advanced fighter system[J]. Acta Aeronautica et Astronautica Sinica, 2020, 41(6): 523629 (in Chinese).
|
4 |
KANDLIKAR S G, BAPAT A V. Evaluation of jet impingement, spray and microchannel chip cooling options for high heat flux removal[J]. Heat Transfer Engineering, 2007, 28(11): 911-923.
|
5 |
CHENG W L, ZHANG W W, CHEN H, et al. Spray cooling and flash evaporation cooling: The current development and application[J]. Renewable and Sustainable Energy Reviews, 2016, 55: 614-628.
|
6 |
SMAKULSKI P, PIETROWICZ S. A review of the capabilities of high heat flux removal by porous materials, microchannels and spray cooling techniques[J]. Applied Thermal Engineering, 2016, 104: 636-646.
|
7 |
WANG J X, GUO W, XIONG K, et al. Review of aerospace-oriented spray cooling technology[J]. Progress in Aerospace Sciences, 2020, 116: 100635.
|
8 |
鲍俊, 王瑜, 牛潜, 等. 喷雾液滴撞击液膜影响参数及流动机理分析[J]. 航空学报, 2021, 42(S1): 726360.
|
|
BAO J, WANG Y, NIU Q, et al. Influencing parameters and film flow mechanism of spray droplet impacting liquid film[J]. Acta Aeronautica et Astronautica Sinica, 2021, 42(S1): 726360 (in Chinese).
|
9 |
XU X J, WANG Y, JIANG Y L, et al. Recent advances in closed loop spray cooling and its application in airborne systems[J].Journal of Thermal Science, 2021, 30(1): 32-50.
|
10 |
李凯翔, 代承霖, 张飞, 等. 大型客机驾驶舱/客舱振动舒适性评估[J]. 航空学报, 2022, 43(6): 525945.
|
|
LI K X, DAI C L, ZHANG F, et al. Evaluation of vibration caused discomfort in passenger aircraft cabin[J]. Acta Aeronautica et Astronautica Sinica, 2022, 43(6): 525945 (in Chinese).
|
11 |
SANTOSH K M, ARUN A, CHANDRA H. Application of vibration on heat transfer-a review[J]. I-manager’s Journal on Future Engineering and Technology, 2019, 15(1): 72-81.
|
12 |
JIANG S L, LI J, XIAO R, et al. Novel spray cooling plate for thermal control of active phased array radar[J]. IOP Conference Series: Materials Science and Engineering, 2019, 677(2): 022093.
|
13 |
SARMADIAN A, DUNNE J F, LONG C A, et al. Heat flux correlation models for spray evaporative cooling of vibrating surfaces in the nucleate boiling region[J]. International Journal of Heat and Mass Transfer, 2020, 160: 120159.
|
14 |
SARMADIAN A, DUNNE J F, JOSE J T, et al. Correlation models of critical heat flux and associated temperature for spray evaporative cooling of vibrating surfaces[J]. International Journal of Heat and Mass Transfer, 2021, 179: 121735.
|
15 |
MOREIRA A L N, MOITA A S, PANÃO M R. Advances and challenges in explaining fuel spray impingement: How much of single droplet impact research is useful?[J]. Progress in Energy and Combustion Science, 2010, 36(5): 554-580.
|
16 |
杨宝海. 喷雾冷却中液滴撞击固体壁面的动态特性及传热特性研究[D]. 重庆: 重庆大学, 2013.
|
|
YANG B H. The study of the dynamic and heat transfer characteristics for a droplet impacting on solid surfaces in spray cooling[D]. Chongqing: Chongqing University, 2013 (in Chinese).
|
17 |
胡定华, 刘诗雨. Al2O3纳米流体液滴撞击壁面的动力学行为数值研究[J]. 浙江大学学报(工学版), 2021, 55(5): 991-998.
|
|
HU D H, LIU S Y. Numerical study on dynamic behaviors of Al2O3 nanofluid droplet impacting on solid wall[J]. Journal of Zhejiang University (Engineering Science), 2021, 55(5): 991-998 (in Chinese).
|
18 |
SHAHMOHAMMADI BENI M, ZHAO J Y, YU K N. Investigation of droplet behaviors for spray cooling using level set method[J]. Annals of Nuclear Energy, 2018, 113: 162-170.
|
19 |
LEE H J, KIM H Y. Control of drop rebound with solid target motion[J]. Physics of Fluids, 2004, 16(10): 3715-3719.
|
20 |
WEISENSEE P B, MA J C, SHIN Y H, et al. Droplet impact on vibrating superhydrophobic surfaces[J]. Physical Review Fluids, 2017, 2(10): 103601.
|
21 |
RAMAN K A, JAIMAN R K, SUI Y, et al. Rebound suppression of a droplet impacting on an oscillating horizontal surface[J]. Physical Review E, 2016, 94(2): 023108.
|
22 |
WANG W, JI C, LIN F Y, et al. Water drops bouncing off vertically vibrating textured surfaces[J]. Journal of Fluid Mechanics, 2019, 876: 1041-1051.
|
23 |
MORADI M, RAHIMIAN M H, CHINI S F. Numerical simulation of droplet impact on vibrating low-adhesion surfaces[J]. Physics of Fluids, 2020, 32(6): 062110.
|
24 |
JOSE J T, DUNNE J F. Numerical simulation of single-droplet dynamics, vaporization, and heat transfer from impingement onto static and vibrating surfaces[J]. Fluids, 2020, 5(4): 188.
|
25 |
NG B T, HUNG Y M, TAN M K. Suppression of the Leidenfrost effect via low frequency vibrations[J]. Soft Matter, 2015, 11(4): 775-784.
|
26 |
KHABAKHPASHEVA T I, KOROBKIN A A. Splashing of liquid droplet on a vibrating substrate[J]. Physics of Fluids, 2020, 32(12): 122109.
|
27 |
CHANG T B, CHEN R H. Experimental investigation into deposition/splashing behavior of droplets impacting vibrating surface[J]. Advances in Mechanical Engineering, 2017, 9(11): 1-10.
|
28 |
ZHANG H X, ZHANG X W, YI X, et al. Dynamic behaviors of droplets impacting on ultrasonically vibrating surfaces[J]. Experimental Thermal and Fluid Science, 2020, 112: 110019.
|
29 |
BREITENBACH J, ROISMAN I V, TROPEA C. From drop impact physics to spray cooling models: A critical review[J]. Experiments in Fluids, 2018, 59(3): 55.
|
30 |
JUNG Y C, BHUSHAN B. Dynamic effects induced transition of droplets on biomimetic superhydrophobic surfaces[J]. Langmuir, 2009, 25(16): 9208-9218.
|
31 |
BRACKBILL J U, KOTHE D B, ZEMACH C. A continuum method for modeling surface tension[J]. Journal of Computational Physics, 1992, 100(2): 335-354.
|
32 |
LI W, WANG J X, ZHU C L, et al. Numerical investigation of droplet impact on a solid superhydrophobic surface[J]. Physics of Fluids, 2021, 33(6): 063310.
|
33 |
WENZEL R N. Resistance of solid surfaces to wetting by water[J]. Industrial & Engineering Chemistry, 1936, 28(8): 988-994.
|
34 |
梁超, 王宏, 朱恂, 等. 液滴撞击不同浸润性壁面动态过程的数值模拟[J]. 化工学报, 2013, 64(8): 2745-2751.
|
|
LIANG C, WANG H, ZHU X, et al. Numerical simulation of droplet impact on surfaces with different wettabilities[J]. CIESC Journal, 2013, 64(8): 2745-2751 (in Chinese).
|