[1] 杨孟飞, 张高, 张伍, 等. 月面无人自动采样返回任务技术设计与实现[J]. 中国科学:技术科学, 2021, 51(7):738-752. YANG M F, ZHANG G, ZHANG W, et al. Technical design and implementation of Chang'e-5 robotic sample return mission on lunar surface[J]. Scientia Sinica (Technologica), 2021, 51(7):738-752(in Chinese). [2] 宁献文, 李劲东, 王玉莹, 等. 中国航天器新型热控系统构建进展评述[J]. 航空学报, 2019, 40(7):022874. NING X W, LI J D, WANG Y Y, et al. Review on construction of new spacecraft thermal control system in China[J]. Acta Aeronautica et Astronautica Sinica, 2019, 40(7):022874(in Chinese). [3] 苗建印, 钟奇, 赵啟伟, 等. 航天器热控制技术[M]. 北京:北京理工大学出版社, 2018:160-179. MIAO J Y, ZHONG Q, ZHAO Q W, et al. Spacecraft thermal control technology[M]. Beijing:Beijing Insititute of Technology Press, 2018:160-179(in Chinese). [4] GILMORE D G. Spacecraft thermal control handbook[M]. 2nd ed. California:The Aerospace Press, 2002:405-472. [5] 宁献文, 王玉莹, 宋馨, 等. 卫星平台模块化柔性热控体系结构[J]. 航天器工程, 2012, 21(2):50-55. NING X W, WANG Y Y, SONG X, et al. Modular flexible thermal control architecture for satellite bus[J]. Spacecraft Engineering, 2012, 21(2):50-55(in Chinese). [6] 宁献文, 张加迅. 基于泵变频调速的航天器热控制技术[J]. 中国空间科学技术, 2011, 31(2):47-52. NING X W, ZHANG J X. Spacecraft thermal control technology based on variable frequency pump[J]. Chinese Space Science and Technology, 2011, 31(2):47-52(in Chinese). [7] NING X W, WANG Y Y, ZHANG J X, et al. An equivalent ground thermal test method for single-phase fluid loop space radiator[J]. Chinese Journal of Aeronautics, 2015, 28(1):86-92. [8] 范含林. 载人航天器热管理技术发展综述[J]. 航天器工程, 2007, 16(1):28-32. FAN H L. Manned spacecraft thermal management technologies development overview[J]. Spacecraft Engineering, 2007, 16(1):28-32(in Chinese). [9] 黄家荣, 范宇峰, 范含林. 载人运输飞船流体回路试验研究[J]. 中国空间科学技术, 2010, 30(1):65-71. HUANG J R, FAN Y F, FAN H L. Experiment study of fluid loop system on manned spaceship[J]. Chinese Space Science and Technology, 2010, 30(1):65-71(in Chinese). [10] MATTHIJSSEN R, VAN PUT P, VAN DER LIST M C A M. Development of an advanced mechanically pumped fluid loop for thermal control of large future telecommunication platforms[R]. De Wijper:Bradford Engineering,2005. [11] BIRUR G C. JPL advanced thermal control technology roadmap[R]. Pasadena:Jet Propulsion Laboratory of California Institute of Technology, 2005. [12] SHEN F, DROLEN B, PRABHU J, et al. Long life mechanical fluid pump for space applications[C]//43rd AIAA Aerospace Sciences Meeting and Exhibit. Reston:AIAA, 2005. [13] BIRUR G, BHANDARI P, BIRUR G, et al. Mars Pathfinder active thermal control system-Ground and flight performance of a mechanically pumped cooling loop[C]//32nd Thermophysics Conference. Reston:AIAA, 1997. [14] BHANDARI P, DUDIK B, BIRUR G, et al. Mars science laboratory launch pad thermal control[C]//41 st International Conference on Environmental Systems. Reston:AIAA, 2011. [15] BHANDARI P, DUDIK B, BIRUR G, et al. Design of accumulators and liquid/gas charging of single phase mechanically pumped fluid loop heat rejection systems[C]//42nd International Conference on Environmental Systems. Reston:AIAA, 2012. [16] PARIS A, KELLY F, KEMPENAAR J, et al. In-flight performance of the Mars science laboratory spacecraft cruise phase thermal control systems[C]//42nd International Conference on Environmental Systems. Reston:AIAA, 2012. [17] BIRUR G, BHANDARI P, BAME D, et al. From concept to flight:An active fluid loop based thermal control system for Mars science laboratory rover[C]//42nd International Conference on Environmental Systems. Reston:AIAA, 2012. [18] BHANDARI P, BIRUR G C, BAME D, et al. Performance of the mechanically pumped fluid loop rover heat rejection system used for thermal control of the Mars science laboratory curiosity rover on the surface of Mars[C]//43rd International Conference on Environmental Systems. Reston:AIAA, 2013. [19] 刘庆志, 任红艳, 赵欣. 实践十号返回式卫星热设计改进及效果[C]//第十三届空间热物理会议论文集. 北京:中国宇航学会飞行器总体专业委员会, 2017:55-58. LIU Q Z, REN H Y, ZHAO X. Improvement and Effect of Thermal Design for PRACTICE No.10 Returning Satellite[C]//13th Space Thermophysics Society Congress. Beijing:Aircraft General Committee of China Aerospace Society, 2017:55-58(in Chinese). [20] 宁献文, 蒋凡, 张栋, 等. 月球无人采样返回探测器一体化热管理方案[J]. 航天器环境工程, 2017, 34(6):598-603. NING X W, JIANG F, ZHANG D, et al. An integrated thermal management scheme for lunar robotic sampling and return probe[J]. Spacecraft Environment Engineering, 2017, 34(6):598-603(in Chinese). [21] 张奕. 传热学[M]. 南京:东南大学出版社, 2004:113-114. ZHANG Y. Heat transfer[M]. Nanjing:Southeast University Press, 2004:113-114(in Chinese). [22] 徐侃, 赵建福, 宁献文, 等. 高真空液态工质排放多变过程分析[J]. 真空与低温, 2015, 21(3):139-145. XU K, ZHAO J F, NING X W, et al. Complex process analysis of the working fluid evacuating in high vacuum[J]. Vacuum and Cryogenics, 2015, 21(3):139-145(in Chinese). [23] 赵建福, 吴克, 徐侃, 等. 复杂流道液体真空排放中的气液两相流态模拟实验[J]. 载人航天, 2016, 22(6):727-731. ZHAO J F, WU K, XU K, et al. Simulation experiment on two-phase gas-liquid flow pattern in complex pipeline during liquid discharge in vacuum[J]. Manned Spaceflight, 2016, 22(6):727-731(in Chinese). [24] 王德伟, 徐侃, 宁献文, 等. 高真空低重力环境下液态工质排放地面模拟试验研究[J]. 航天器环境工程, 2019, 36(3):257-263. WANG D W, XU K, NING X W, et al. Ground simulation test for the working fluid evacuation in high vacuum and low gravity environment[J]. Spacecraft Environment Engineering, 2019, 36(3):257-263(in Chinese). [25] 王玉莹, 宁献文, 苗建印, 等. 嫦娥五号水升华热排散系统月面运行特性分析[J]. 中国科学:技术科学, 2021, 51(12):1445-1452. WANG Y Y, NING X W, MIAO J Y, et al. Work performance analysis on the Chang'e-5 lunar lander water sublimation heat dissipation system[J]. Scientia Sinica (Technologica), 2021, 51(12):1445-1452(in Chinese). |