ACTA AERONAUTICAET ASTRONAUTICA SINICA ›› 2022, Vol. 43 ›› Issue (7): 25489.doi: 10.7527/S1000-6893.2021.25489
• Reviews • Previous Articles Next Articles
WANG Wei1,2, WANG Qinzhao1, LIU Gangfeng2, CHENG Hui2, TAO Yi2, GUO Aobing1
Received:
2021-03-15
Revised:
2021-07-21
Online:
2022-07-15
Published:
2021-07-20
Supported by:
CLC Number:
WANG Wei, WANG Qinzhao, LIU Gangfeng, CHENG Hui, TAO Yi, GUO Aobing. Countering unmanned ground system:A review of key technologies[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2022, 43(7): 25489.
[1] 薛春祥,黄孝鹏,朱咸军,等.外军无人系统现状与发展趋势[J].雷达与对抗, 2016, 36(1):1-5, 10. XUE C X, HUANG X P, ZHU X J, et al. Status quo and development trends of foreign military's unmanned systems[J]. Radar&ECM, 2016, 36(1):1-5, 10(in Chinese). [2] 孟红,朱森.地面无人系统的发展及未来趋势[J].兵工学报, 2014, 35(S1):1-7. MENG H, ZHU S. The development and future trends of unmanned ground systems[J]. Acta Armamentarii, 2014, 35(Sup 1):1-7(in Chinese). [3] SHIMOMURA N, FUJIMOTO K, OKI T, et al. An algorithm for distinguishing the types of objects on the road using laser radar and vision[J]. IEEE Transactions on Intelligent Transportation Systems, 2002, 3(3):189-195. [4] DÍAZ R, HALLMAN S, FOWLKES C C. Detecting dynamic objects with multi-view background subtraction[C]//2013 IEEE International Conference on Computer Vision. Piscataway:IEEE Press, 2013:273-280. [5] MORO A, MUMOLO E, NOLICH M, et al. Real-time background modeling based on classified dynamic objects for human robot application[C]//2012 Ninth International Conference on Networked Sensing (INSS). Piscataway:IEEE Press, 2012:1-7. [6] 赵万龙,孟维晓,韩帅.多源融合导航技术综述[J].遥测遥控, 2016, 37(6):54-60. ZHAO W L, MENG W X, HAN S. A survey of multi-source information fusion navigation[J]. Journal of Telemetry, Tracking and Command, 2016, 37(6):54-60(in Chinese). [7] 刘严岩,王进,冒蓉.无人地面车辆的环境感知技术[J].太赫兹科学与电子信息学报, 2015, 13(5):810-815. LIU Y Y, WANG J, MAO R. Environment perception technology of unmanned ground vehicles[J]. Journal of Terahertz Science and Electronic Information Technology, 2015, 13(5):810-815(in Chinese). [8] 王杰东,刘北,董强健.美国防部《无人系统综合路线图》分析[J].飞航导弹, 2019(5):30-33. WANG J D, LIU B, DONG Q J. Analysis of American DAP-AR'Unmanned Systems Integrated Roadmap'[J]. Aerodynamic Missile Journal, 2019(5):30-33(in Chinese). [9] Unmanned systems integrated roadmap FY2017-2042[EB/OL]. http://cdn.defensedaily.com/wp-content/uploads/post_attachment/206477.pdf, 2018. [10] 芦鹏.基于高光谱成像技术的运动人脸姿态识别方法[J].激光杂志, 2020, 41(11):105-109. LU P. Moving face gesture recognition method based on hyper-spectrum imaging technology[J]. Laser Journal, 2020, 41(11):105-109(in Chinese). [11] XIE Z H, NIU J Y, YI L, et al. Regularization and attention feature distillation base on light CNN for hyperspectral face recognition[J]. Multimedia Tools and Applications, 2021:1-17. [12] 雷帆朴.基于位敏阳极的单光子成像关键技术研究[D].西安:中国科学院大学(中国科学院西安光学精密机械研究所), 2019. LEI F P. Research on the key technology of single photon imaging based on position sensitive anode[D]. Xi'an:Xi'an Institute of Optics and Precision Mechanics, Chinese Academy of Sciences, 2019(in Chinese). [13] KONG L D, ZHAO Q Y, ZHENG K, et al. Noise-tolerant single-photon imaging with a superconducting nanowire camera[J]. Optics Letters, 2020, 45(24):6732-6735. [14] 高博,张乃千,范旭.反无人机电子战发展[J].国防科技, 2019, 40(1):35-39. GAO B, ZHANG N Q, FAN X. Analysis on the development and application of Anti-UAV electronic warfare[J]. National Defense Technology, 2019, 40(1):35-39(in Chinese). [15] LU T T, ZHANG M, KANG T B, et al. Joint TOA/DOA estimation using the SAGE algorithm in OFDM systems with virtual carriers[J]. Journal of Physics:Conference Series, 2019, 1169:012057. [16] GOUDA M, ADAMS E R, HILL P C J. Detection&discrimination of covert DS/SS signals using triple correlation[C]//Proceedings of the Fifteenth National Radio Science Conference. Piscataway:IEEE Press, 1998:C35/1-C35/6. [17] SHI S, ZHANG T Q, XU X, et al. Detection of DSSS/UQPSK signal based on fourth-order cumulant algorithm[C]//20147th International Congress on Image and Signal Processing. Piscataway:IEEE Press, 2014:1038-1042. [18] JIN Y, JI H B. A cyclic-cumulant based method for DS-SS signal detection and parameter estimation[C]//2005 IEEE International Symposium on Microwave, Antenna, Propagation and EMC Technologies for Wireless Communications. Piscataway:IEEE Press, 2005:966-969. [19] FEI Z, MING L, BIN T. Blind detection of DS/SS signals through variance fractal dimension trajectory[C]//2008 International Conference on Computer and Electrical Engineering. Piscataway:IEEE Press, 2008:145-149. [20] UYSAL C, FILIK T. Presence detection of long-and-short-code DS-SS signals using the phase linearity of multichannel sensors[C]//201419th International Conference on Digital Signal Processing. Piscataway:IEEE Press, 2014:305-309. [21] 刘万贤,彭华.一种突发直扩信号盲检测算法[J].信息工程大学学报, 2013, 14(6):700-707. LIU W X, PENG H. Algorithm for blind detection of the burst DSSS signal[J]. Journal of Information Engineering University, 2013, 14(6):700-707(in Chinese). [22] 欧阳鑫信,姚山峰,杨宇翔,等.跳频信号的相参与非相参积累时频差估计方法[J].系统工程与电子技术, 2021, 43(5):1184-1190. OUYANG X X, YAO S F, YANG Y X, et al. Coherent and non-coherent integration TDOA/FDOA estimation method of frequency-hopping signals[J]. Systems Engineering and Electronics, 2021, 43(5):1184-1190(in Chinese). [23] O'SHEA T J, CORGAN J, CLANCY T C. Convolutional radio modulation recognition networks[C]//Engineering Applications of Neural Networks, 2016. [24] O'SHEA T J, CORGAN J, CLANCY T C. Unsupervised representation learning of structured radio communication signals[C]//2016 First International Workshop on Sensing, Processing and Learning for Intelligent Machines (SPLINE). Piscataway:IEEE Press, 2016:1-5. [25] O'SHEA T J, WEST N, VONDAL M, et al. Semi-supervised radio signal identification[C]//201719th International Conference on Advanced Communication Technology (ICACT). Piscataway:IEEE Press, 2017:33-38. [26] O'SHEA T, WEST N. Radio machine learning dataset generation with GNU radio[C]//Proceedings of the GNU Radio Conference, 2016:1-6. [27] 杨司韩,金山,彭华,等.基于谱图和深度卷积网络的超短波特定信号检测和识别方法[J].信息工程大学学报, 2019, 20(2):129-135. YANG S H, JIN S, PENG H, et al. Ultra-short wave specific signal detection and recognition based on spectrogram and deep convolution neural network[J]. Journal of Information Engineering University, 2019, 20(2):129-135(in Chinese). [28] 孙伟,彭华,李天昀,等.基于时频图像处理的宽带特定信号检测方法[J].信息工程大学学报, 2020, 21(5):545-551. SUN W, PENG H, LI T Y, et al. Broadband specific signal detection method based on time-frequency image processing[J]. Journal of Information Engineering University, 2020, 21(5):545-551(in Chinese). [29] ZHENG Y L, GONG Q Y, ZHANG S F. Time-frequency feature-based underwater target detection with deep neural network in shallow sea[J]. Journal of Physics:Conference Series, 2021, 1756(1):012006. [30] 李知达.基于SIFT算法的激光成像雷达点云图像与可见光图像的融合研究[D].西安:西安电子科技大学, 2014. LI Z D. A fusion algorithm of the images from the LADAR and the camera based on SIFT[D]. Xi'an:Xidian University, 2014(in Chinese). [31] 曾湘峰.车载多传感器融合下的动态目标检测与跟踪[D].长沙:国防科学技术大学, 2015. ZENG X F. Dynamic object detection and tracking with vehicle-mounted multi-sensor fusion[D]. Changsha:National University of Defense Technology, 2015(in Chinese). [32] 汪勇,张英,廖如超,等.基于可见光、热红外及激光雷达传感的无人机图像融合方法[J].激光杂志, 2020, 41(2):141-145. WANG Y, ZHANG Y, LIAO R C, et al. UAV image fusion method based on visible light, infrared light and lidar sensors[J]. Laser Journal, 2020, 41(2):141-145(in Chinese). [33] WANG D, HU A Q, CHEN Y F, et al. An ESPRIT-based approach for RF fingerprint estimation in multi-antenna OFDM systems[J]. IEEE Wireless Communications Letters, 2017, 6(6):702-705. [34] WANG S H, JIANG H L, FANG X F, et al. Radio frequency fingerprint identification based on deep complex residual network[J]. IEEE Access, 2020, 8:204417-204424. [35] ZHUO F, HUANG Y L, CHEN J. Radio frequency fingerprint extraction of radio emitter based on I/Q imbalance[J]. Procedia Computer Science, 2017, 107:472-477. [36] 刘高辉,张晓博.一种基于深度置信网络的通信辐射源个体识别方法[J].电波科学学报, 2020, 35(3):395-403. LIU G H, ZHANG X B. A method for personal identification of communication radiation source based on deep belief network[J]. Chinese Journal of Radio Science, 2020, 35(3):395-403(in Chinese). [37] 周鑫,何晓新,郑昌文.基于图像深度学习的无线电信号识别[J].通信学报, 2019, 40(7):114-125. ZHOU X, HE X X, ZHENG C W. Radio signal recognition based on image deep learning[J]. Journal on Communications, 2019, 40(7):114-125(in Chinese). [38] 陶冠宏,周林.一种基于深度学习的辐射源信号调制识别新算法[J].科学技术与工程, 2020, 20(3):1081-1085. TAO G H, ZHOU L. A novel emitter signal modulation classification method with deep learning[J]. Science Technology and Engineering, 2020, 20(3):1081-1085(in Chinese). [39] PENG S L, JIANG H Y, WANG H X, et al. Modulation classification based on signal constellation diagrams and deep learning[J]. IEEE Transactions on Neural Networks and Learning Systems, 2019, 30(3):718-727. [40] WANG D S, ZHANG M, LI J, et al. Intelligent constellation diagram analyzer using convolutional neural network-based deep learning[J]. Optics Express, 2017, 25(15):17150-17166. [41] DAI A, ZHANG H J, SUN H. Automatic modulation classification using stacked sparse auto-encoders[C]//2016 IEEE 13th International Conference on Signal Processing. Piscataway:IEEE Press, 2016:248-252. [42] 郭蕴欣,张越,马宏.基于CNN的数字信号调制识别研究[J].电子测量技术, 2019, 42(14):112-116. GUO Y X, ZHANG Y, MA H. Research on modulation identification of digital signals based on convolutional neural network[J]. Electronic Measurement Technology, 2019, 42(14):112-116(in Chinese). [43] SMITH A, EVANS M, DOWNEY J. Modulation classification of satellite communication signals using cumulants and neural networks[C]//2017 Cognitive Communications for Aerospace Applications Workshop (CCAA). Piscataway:IEEE Press, 2017:1-8. [44] 白芃远,许华,孙莉.基于卷积神经网络与时频图纹理信息的信号调制方式分类方法[J].西北工业大学学报, 2019, 37(4):816-823. BAI P Y, XU H, SUN L. A recognition algorithm for modulation schemes by convolution neural network and spectrum texture[J]. Journal of Northwestern Polytechnical University, 2019, 37(4):816-823(in Chinese). [45] 鲜佩,张晓芸,高昭昭.基于CNN的电磁辐射源目标识别算法[J].电子信息对抗技术, 2020, 35(2):34-38. XIAN P, ZHANG X Y, GAO Z Z. Electromagnetic radiation source target recognition algorithm based on CNN[J]. Electronic Information Warfare Technology, 2020, 35(2):34-38(in Chinese). [46] 柏如龙,孙超,张世川. IFF信号单站无源定位技术[J].指挥信息系统与技术, 2017, 8(3):59-62. BAI R L, SUN C, ZHANG S C. Single observer passive location technology for IFF signals[J]. Command Information System and Technology, 2017, 8(3):59-62(in Chinese). [47] 李明哲,李小将,李志亮.基于FDOA的无源定位算法研究现状与展望[J].兵工自动化, 2019, 38(4):28-34, 48. LI M Z, LI X J, LI Z L. Research status and prospect of passive localization methods based on frequency difference of arrival[J]. Ordnance Industry Automation, 2019, 38(4):28-34, 48(in Chinese). [48] 吴魏.多站无源时频差高精度定位技术研究[D].郑州:解放军信息工程大学, 2015. WU W. Research on high accuracy passive localization using TDOA and FDOA with multiple receivers[D]. Zhengzhou:PLA Information Engineering University, 2015(in Chinese). [49] XIONG W X, SCHINDELHAUER C, SO H C, et al. TDOA-based localization with NLOS mitigation via robust model transformation and neurodynamic optimization[J]. Signal Processing, 2021, 178:107774. [50] ENNASR O, TAN X B. Time-difference-of-arrival (TDOA)-based distributed target localization by A robotic network[J]. IEEE Transactions on Control of Network Systems, 2020, 7(3):1416-1427. [51] OUYANG X X, HE Q, YANG Y X, et al. TDOA/FDOA estimation algorithm of frequency-hopping signals based on CAF coherent integration[J]. IET Communications, 2020, 14(2):331-336. [52] CAO S, CHEN X, ZHANG X, et al. Combined weighted method for TDOA-based localization[J]. IEEE Transactions on Instrumentation and Measurement, 2020, 69(5):1962-1971. [53] XU C, WANG Z, WANG Y H, et al. Three passive TDOA-AOA receivers-based flying-UAV positioning in extreme environments[J]. IEEE Sensors Journal, 2020, 20(16):9589-9595. [54] 杜宝舟,张冬晓,程二威.超宽带电磁脉冲对无人机辐照耦合仿真研究[J].计算机仿真, 2018, 35(4):29-32, 37. DU B Z, ZHANG D X, CHENG E W. Simulation study on irradiation coupling of UWB electromagnetic pulse to UAV[J]. Computer Simulation, 2018, 35(4):29-32, 37(in Chinese). [55] 赵敏,许彤,程二威,等.无人机数据链电磁干扰机理和防护研究[J].强激光与粒子束, 2021, 33(3):49-56. ZHAO M, XU T, CHENG E W, et al. Mechanism and protection on the data link of UAV exposed to electromagnetic interference[J]. High Power Laser and Particle Beams, 2021, 33(3):49-56(in Chinese). [56] 邵堃,雷迎科.对武器制导数据链灵巧干扰技术[J].弹箭与制导学报, 2020, 40(3):17-22. SHAO K, LEI Y K. Smart jamming technology for weapon guidance data link[J]. Journal of Projectiles, Rockets, Missiles and Guidance, 2020, 40(3):17-22(in Chinese). [57] 段朋成,马文平.无人机上行链路抗欺骗干扰方案设计[J].测控技术, 2017, 36(10):147-150. DUAN P C, MA W P. Design of anti-spoofing scheme for UAV uplink[J]. Measurement&Control Technology, 2017, 36(10):147-150(in Chinese). [58] 秦剑.基于生成对抗网络的信号重构[D].西安:西安电子科技大学, 2018. QIN J. Signal reconstruction based on Generative adversarial Networks[D]. Xi'an:Xidian University, 2018(in Chinese). [59] 赵凡,金虎.基于GAN的通信干扰波形生成技术[J].系统工程与电子技术, 2021, 43(4):1080-1088. ZHAO F, JIN H. Communication jamming waveform generation technology based on GAN[J]. Systems Engineering and Electronics, 2021, 43(4):1080-1088(in Chinese). [60] HUMPHREYS T E. Detection strategy for cryptographic GNSS anti-spoofing[J]. IEEE Transactions on Aerospace and Electronic Systems, 2013, 49(2):1073-1090. [61] RüGAMER A, KOWALEWSKI D. Jamming and spoofing of GNSS signals——an underestimated Risk?[C]//Wisdom of the Ages to the Challenges of the Modern World, 2015. [62] FROST T, BUESNEL G. The vulnerability of GNSS timing receivers to spoofing attacks[C]//Workshop on Synchronization and Timing Systems (WSTS 2016), 2016. [63] FROST T, BUESNEL G. Spoofing GNSS timing receivers[C]//2015 International Telecom Sync Forum, 2015. [64] HE L, LI W, GUO C J, et al. Civilian unmanned aerial vehicle vulnerability to GPS spoofing attacks[C]//2014 Seventh International Symposium on Computational Intelligence and Design. Piscataway:IEEE Press, 2014:212-215. [65] PSIAKI M L, HUMPHREYS T E, STAUFFER B. Attackers can spoof navigation signals without our knowledge. Here's how to fight back GPS lies[J]. IEEE Spectrum, 2016, 53(8):26-53. [66] SEO S H, LEE B H, IM S H, et al. Effect of spoofing on unmanned aerial vehicle using counterfeited GPS signal[J]. Journal of Positioning, Navigation, and Timing, 2015, 4(2):57-65. [67] KRASOVSKI S, PETOVELLO M, LACHAPELLE G. Ultra-tight GPS/INS receiver performance in the presence of jamming signals[C]//ION GNSS+2014, 2014 [68] LI C, WANG X. Jamming of unmanned aerial vehicle with GPS/INS integrated navigation system based on trajectory cheating[J]. Journal of Nanjing University of Aeronautics and Astronautics, 2017, 49(3):420-427. [69] CHEN J, LIU Y, LI Y H, et al. A method of traction partial jamming on GPS/INS integrated navigation[C]//Proceedings of the 2nd International Conference on Computer Science and Electronics Engineering (ICCSEE 2013). Paris:Atlantis Press, 2013. [70] 赫永磊,李冬,王肖飞.电子对抗手段干扰无人机GPS/INS导航系统效能分析[J].舰船电子工程, 2020, 40(12):44-47. HE Y L, LI D, WANG X F. Effectiveness analysis of electronic countermeasures jamming UAV GPS/INS navigation system[J]. Ship Electronic Engineering, 2020, 40(12):44-47(in Chinese). [71] 毛虎,吴德伟,卢虎,等. GPSM码信号压制干扰样式效能分析[J].电子科技大学学报, 2015, 44(3):350-356. MAO H, WU D W, LU H, et al. Effectiveness analysis of the blanket jamming mode to GPS M code signal[J]. Journal of University of Electronic Science and Technology of China, 2015, 44(3):350-356(in Chinese). [72] 张欣然,李洪,杨春,等.欺骗干扰对GNSS矢量跟踪环路的影响[J].清华大学学报(自然科学版), 2022, 62(1):163-171. ZHANG X R, LI H, YANG C, et al. Influence of spoofing interference on GNSS vector tracking loops[J]. Journal of Tsinghua University (Science and Technology), 2022, 62(1):163-171(in Chinese). [73] 柳亚川,寇艳红.同步式GPS欺骗干扰信号生成技术研究与设计[J].北京航空航天大学学报, 2020, 46(4):814-821. LIU Y C, KOU Y H. Research and design of synchronous GPS spoofing signal generation technology[J]. Journal of Beijing University of Aeronautics and Astronautics, 2020, 46(4):814-821(in Chinese). [74] 陈军,王义冬,刘义,等.一种对GPS/INS组合导航的曳引式拉偏干扰[J].海军航空工程学院学报, 2012, 27(4):446-450. CHEN J, WANG Y D, LIU Y, et al. A method of traction partial jamming on GPS/INS integrated navigation[J]. Journal of Naval Aeronautical and Astronautical University, 2012, 27(4):446-450(in Chinese). [75] 王文益,陈晨.配备GPS/INS组合导航系统的无人机诱捕方法[J].兵器装备工程学报, 2020, 41(11):212-217. WANG W Y, CHEN C. Method of trapping UAV equipped with GPS/INS integrated navigation system[J]. Journal of Ordnance Equipment Engineering, 2020, 41(11):212-217(in Chinese). [76] LIU C B, WU C, HAN X E. Multiple-input multiple-output 3D imaging laser radar[C]//Proc SPIE 9674, AOPC 2015:Optical and Optoelectronic Sensing and Imaging Technology, 2015:714-718. [77] MISU K, MIURA J. Specific person detection and tracking by a mobile robot using 3D LIDAR and ESPAR antenna[M]//Intelligent Autonomous Systems 13. Cham:Springer International Publishing, 2015:705-719. [78] KOLB A, MEACLEM C, CHEN X Q, et al. Tree trunk detection system using LiDAR for a semi-autonomous tree felling robot[C]//2015 IEEE 10th Conference on Industrial Electronics and Applications. Piscataway:IEEE Press, 2015:84-89. [79] 李慧,李岩,刘冰锋,等.激光干扰技术现状与发展及关键技术分析[J].激光与光电子学进展, 2011, 48(8):081407. LI H, LI Y, LIU B F, et al. Status, development and key technique analysis of laser jamming technology[J]. Laser&Optoelectronics Progress, 2011, 48(8):081407(in Chinese). [80] 唐波,郭琨毅.合成孔径激光雷达电子对抗措施分析[J].红外与激光工程, 2007, 36(S2):472-475. TANG B, GUO K Y. The analysis of electronic countermeasures for SAL[J]. Infrared and Laser Engineering, 2007, 36(Sup 2):472-475(in Chinese). [81] 张英远.激光对抗中的告警和欺骗干扰技术[D].西安:西安电子科技大学, 2012. ZHANG Y Y. Warning and deception jamming technology of laser countermeasure[D]. Xi'an:Xidian University, 2012(in Chinese). [82] 王萃.激光雷达距离欺骗干扰技术研究[D].成都:电子科技大学, 2016. WANG C. Research on distance deception jamming technology of laser radar[D]. Chengdu:University of Electronic Science and Technology of China, 2016(in Chinese). [83] 曹立华,陈长青.激光欺骗干扰技术与系统研究[J].光机电信息, 2011, 28(7):27-32. CAO L H, CHEN C Q. Technology and system of laser deception jamming[J]. OME Information, 2011, 28(7):27-32(in Chinese). [84] STOTTELAAR B G B. Practical cyber-attacks on autonomous vehicles[D]. Enschede:University of Twente, 2015. [85] SHIN H, KIM D, KWON Y, et al. Illusion and dazzle:Adversarial optical channel exploits against lidars for automotive applications[C]//Cryptographic Hardware and Embedded Systems-CHES 2017, 2017. [86] CAO Y L, XIAO C W, CYR B, et al. Adversarial sensor attack on LiDAR-based perception in autonomous driving[C]//Proceedings of the 2019 ACM SIGSAC Conference on Computer and Communications Security. New York:ACM, 2019:2267-2281. [87] SUN J C, CAO Y L, CHEN Q A, et al. Towards robust LiDAR-based perception in autonomous driving:General black-box adversarial sensor attack and countermeasures[C]//SEC'20:Proceedings of the 29th USENIX Conference on Security Symposium, 2020:877-894. [88] CAO Y L, XIAO C W, YANG D W, et al. Adversarial objects against LiDAR-based autonomous driving systems[DB/OL]. arXiv preprint:1907.05418, 2019. [89] TU J, REN M Y, MANIVASAGAM S, et al. Physically realizable adversarial examples for LiDAR object detection[C]//2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Piscataway:IEEE Press, 2020:13713-13722. [90] 陈先中,刘荣杰,张森,等.煤矿地下毫米波雷达点云成像与环境地图导航研究进展[J].煤炭学报, 2020, 45(6):2182-2192. CHEN X Z, LIU R J, ZHANG S, et al. Development of millimeter wave radar imaging and SLAM in underground coal mine environment[J]. Journal of China Coal Society, 2020, 45(6):2182-2192(in Chinese). [91] LI Y, LIU Y T, WANG Y P, et al. The millimeter-wave radar SLAM assisted by the RCS feature of the target and IMU[J]. Sensors, 2020, 20(18):5421. [92] MONTEATH G M. Environmental analysis of the sediments of southern Monterey Bay California[M]. Monterey:Naval Postgraduate School, 1965. [93] ERALTAY K, ÖZKAZANÇ Y. Jamming of FMCW radars[C]//201220th Signal Processing and Communications Applications Conference (SIU). Piscataway:IEEE Press, 2012:1-4. [94] ZAKERHAGHIGHI M R, MIVEHCHY M, SABAHI M F. Implementation and assessment of jamming effectiveness against an FMCW tracking radar based on a novel criterion[J]. IEEE Transactions on Aerospace and Electronic Systems, 2020, 56(6):4723-4733. [95] 李阳,王楚媛,陈桥,等. FMCW车载雷达自适应干扰抑制方法[J].信号处理, 2021, 37(2):258-267. LI Y, WANG C Y, CHEN Q, et al. Mutual interference suppression method for FMCW automotive radar[J]. Journal of Signal Processing, 2021, 37(2):258-267(in Chinese). [96] 许致火,施佺,孙玲.基于多径干扰认知的汽车毫米波雷达自适应波形优化方法[J].南京大学学报(自然科学), 2018, 54(3):597-603. XU Z H, SHI Q, SUN L. Adaptive millimeter-wave automotive radar waveform optimization based on learning of multi-path interference[J]. Journal of Nanjing University (Natural Science), 2018, 54(3):597-603(in Chinese). [97] 卢雪怡,杨爱平,盛骥松.基于移频的距离波门拖引干扰方法分析与仿真[J].舰船电子对抗, 2018, 41(3):42-44, 95. LU X Y, YANG A P, SHENG J S. Analysis and simulation of range gate pull jamming method based on frequency shift[J]. Shipboard Electronic Countermeasure, 2018, 41(3):42-44, 95(in Chinese). [98] 谌睿.间歇采样转发干扰特性研究与抗干扰波形设计[D].长沙:国防科技大学, 2017. CHEN R. Research on characteristics of interrupted sampling repeater jamming and anti-jamming waveform design[D]. Changsha:National University of Defense Technology, 2017(in Chinese). [99] 钱升起.距离门拖引干扰与雷达抗干扰[D].北京:北京理工大学, 2016. QIAN S Q. Range gate pull off jamming and radar anti-jamming[D]. Beijing:Beijing Institute of Technology, 2016(in Chinese). [100] ZHONG L J, QIN J Y, YANG X, et al. An accurate linear method for 3D line reconstruction for binocular or multiple view stereo vision[J]. Sensors, 2021, 21(2):658. [101] 李文澜.基于立体视觉和机器学习的车辆检测方法的研究[D].长春:吉林大学, 2018. LI W L. Research on vehicle detection methods based on stereo vision and machine learning[D]. Changchun:Jilin University, 2018(in Chinese). [102] MORENO-ESCOBAR J J, MORALES-MATAMOROS O, TEJEIDA-PADILLA R. Unmanned ground vehicle with stereoscopic vision for a safe autonomous exploration[J]. International Journal of Advanced Computer Science and Applications, 2019, 10(7):0100779. [103] WEI X X, GUO Y, LI B. Black-box adversarial attacks by manipulating image attributes[J]. Information Sciences, 2021, 550:285-296. [104] PARK S, SO J. On the effectiveness of adversarial training in defending against adversarial example attacks for image classification[J]. Applied Sciences, 2020, 10(22):8079. [105] ZHANG H T, ZHOU W G, LI H Q. Contextual adversarial attacks for object detection[C]//2020 IEEE International Conference on Multimedia and Expo. Piscataway:IEEE Press, 2020:1-6. [106] ZHANG H T, SHEN C. Best arm identification for both stochastic and adversarial multi-armed bandits[C]//2018 IEEE Information Theory Workshop. Piscataway:IEEE Press, 2018:1-5. [107] 张高志,刘新平,邵明文.用于白盒目标攻击的GAN对抗样本生成[J].模式识别与人工智能, 2020, 33(9):830-838. ZHANG G Z, LIU X P, SHAO M W. Generating adversarial example with GAN for white-box target attacks[J]. Pattern Recognition and Artificial Intelligence, 2020, 33(9):830-838(in Chinese). [108] ZHAO G P, ZHANG M Y, LIU J J, et al. AP-GAN:Adversarial patch attack on content-based image retrieval systems[J]. GeoInformatica, 2020:1-31. [109] KIM A, WAMPLER B, GOPPERT J, et al. Cyber attack vulnerabilities analysis for unmanned aerial vehicles[C]//Infotech@Aerospace 2012. Reston:AIAA, 2012. [110] FOUDA R M. Security vulnerabilities of cyberphysical unmanned aircraft systems[J]. IEEE Aerospace and Electronic Systems Magazine, 2018, 33(9):4-17. [111] ZHI Y Y, FU Z J, SUN X M, et al. Security and privacy issues of UAV:A survey[J]. Mobile Networks and Applications, 2020, 25(1):95-101. [112] VANITHA N, PADMAVATHI G. A study on various cyber-attacks and their classification in UAV assisted vehicular ad-hoc networks[M]//Communications in Computer and Information Science. Singapore:Springer, 2018:124-131. [113] 任奎,孟泉润,闫守琨,等.人工智能模型数据泄露的攻击与防御研究综述[J].网络与信息安全学报, 2021, 7(1):1-10. REN K, MENG Q R, YAN S K, et al. Survey of artificial intelligence data security and privacy protection[J]. Chinese Journal of Network and Information Security, 2021, 7(1):1-10(in Chinese). [114] 于赫.网联汽车信息安全问题及CAN总线异常检测技术研究[D].长春:吉林大学, 2016. YU H. Research on connected vehicle cyber security and anomaly detection technology for in-vehicle CAN bus[D]. Changchun:Jilin University, 2016(in Chinese). [115] ZHOU H P, SHEN S G, LIU J H. Malware propagation model in wireless sensor networks under attack-defense confrontation[J]. Computer Communications, 2020, 162:51-58. [116] DEEPA V, RADHA N. A survey on network intrusion system attacks classification using machine learning techniques[J]. IOP Conference Series:Materials Science and Engineering, 2021, 1022(1):012036. [117] 石荣.历史上实际交战中雷达干扰效果评估方法回顾及启示[J].电子信息对抗技术, 2019, 34(5):49-56. SHI R. Retrospect and inspiration on radar jamming effectiveness evaluation method during actual electronic fighting in the history[J]. Electronic Information Warfare Technology, 2019, 34(5):49-56(in Chinese). [118] OU J, ZHAO F, AI X F, et al. Quantitative evaluation for self-screening jamming effectiveness based on the changing characteristics of intercepted radar signals[C]//2016 CIE International Conference on Radar (RADAR). Piscataway:IEEE Press, 2016:1-5. [119] QIN F T, MENG J, DU J, et al. Radar jamming effect evaluation based on AdaBoost combined classification model[C]//2013 IEEE 4th International Conference on Software Engineering and Service Science. Piscataway:IEEE Press, 2013:910-913. [120] 刘松涛,雷震烁,葛杨,等.电子对抗干扰效果评估技术综述[J].中国电子科学研究院学报, 2020, 15(4):306-317, 342. LIU S T, LEI Z S, GE Y, et al. A review on evaluation technology of jamming effects of electronic countermeasure[J]. Journal of China Academy of Electronics and Information Technology, 2020, 15(4):306-317, 342(in Chinese). [121] 耿凯迪.雷达干扰效果在线评估技术研究[D].西安:西安电子科技大学, 2019. GENG K D. Research on the online effectiveness evaluation of radar jamming[D]. Xi'an:Xidian University, 2019(in Chinese). [122] 赵耀东,徐旺.一种基于雷达状态变化的干扰效果在线评估方法[J].电子信息对抗技术, 2016, 31(3):42-46. ZHAO Y D, XU W. A method of real-time electronic attack effectiveness evaluation based on state transition of radar[J]. Electronic Information Warfare Technology, 2016, 31(3):42-46(in Chinese). [123] 邢强,贾鑫,朱卫纲,等.基于干扰方的雷达在线干扰效果评估[J].电子信息对抗技术, 2018, 33(6):57-62. XING Q, JIA X, ZHU W G, et al. Radar online jamming effect evaluation based on jamming side[J]. Electronic Information Warfare Technology, 2018, 33(6):57-62(in Chinese). [124] 王伟,杨俊安,刘辉,等.基于干扰效果在线评估的行为参数分析[J].电子信息对抗技术, 2016, 31(6):76-80. WANG W, YANG J N, LIU H, et al. Behavioral parametric analysis based on evaluation of jamming effect online[J]. Electronic Information Warfare Technology, 2016, 31(6):76-80(in Chinese). [125] 崔双洋.认知电子对抗中的目标状态识别技术研究[D].北京:北京理工大学, 2016. CUI S Y. Research of the target state recognition techniques in cognitive electronic countermeasure[D]. Beijing:Beijing Institute of Technology, 2016(in Chinese). |
[1] | Jinwei JIA, Limin LIU, Zhuangzhi HAN, Hui XIE. Design of anti-SDIF radio frequency stealth signal and echo signal processing technology based on compressed sensing [J]. Acta Aeronautica et Astronautica Sinica, 2023, 44(13): 327934-327934. |
[2] | PEI Yang, SONG Bifeng, SHI Shuai. Analysis method of aircraft combat survivability:Progress and challenge [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2016, 37(1): 216-234. |
[3] | HUANG Long, DONG Chunxi, ZHAO Guoqing, SHEN Zhibo. InSAR Deception Jamming Method Based on Multiple Jammers [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2014, 35(6): 1714-1723. |
[4] | SONG Zhiyong, XIAO Huaitie, ZHU Yilong, LU Zaiqi. Detection of Presence of Towed Radar Active Decoy Based on Extended Monopulse Ratio [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2011, 32(9): 1656-1668. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
Address: No.238, Baiyan Buiding, Beisihuan Zhonglu Road, Haidian District, Beijing, China
Postal code : 100083
E-mail:hkxb@buaa.edu.cn
Total visits: 6658907 Today visits: 1341All copyright © editorial office of Chinese Journal of Aeronautics
All copyright © editorial office of Chinese Journal of Aeronautics
Total visits: 6658907 Today visits: 1341