[1] ZHANG J H, LI X X, XU D S, et al. Recent progress in the simulation of microstructure evolution in titanium alloys[J]. Progress in Natural Science:Materials International, 2019, 29(3):295-304. [2] 丁文锋, 奚欣欣, 占京华, 等. 航空发动机钛材料磨削技术研究现状及展望[J]. 航空学报, 2019, 40(6):022763. DING W F, XI X X, ZHAN J H, et al. Research status and future development of grinding technology of titanium materials for aero-engines[J]. Acta Aeronautica et Astronautica Sinica, 2019, 40(6):022763(in Chinese). [3] 赵波, 李鹏涛, 张存鹰, 等. 超声振动方向对TC4钛合金铣削特性的影响[J]. 航空学报, 2020, 41(2):623301. ZHAO B, LI P T, ZHANG C Y, et al. Effect of ultrasonic vibration direction on milling characteristics of TC4 titanium alloy[J]. Acta Aeronautica et Astronautica Sinica, 2020, 41(2):623301(in Chinese). [4] WANG Y, ZHU J C, LAI Z H, et al. Hot compressive deformation behaviour and microstructural variation of TA15 titanium alloy[J]. Materials Science and Technology, 2005, 21(12):1466-1470. [5] 鹿靖, 王玉会, 张旺峰. 组织形态对近α型TA15钛合金拉伸性能的影响[J]. 金属热处理, 2011, 36(6):25-28. LU J, WANG Y H, ZHANG W F. Effect of microstructure on tensile properties of near-alpha TA15 titanium alloy[J]. Heat Treatment of Metals, 2011, 36(6):25-28(in Chinese). [6] SRINIVASAN R, RAMNARAYAN V, DESHPANDE U, et al. Computer simulation of the forging of fine grain IN-718 alloy[J]. Metallurgical Transactions A, 1993, 24(9):2061-2069. [7] MA Q, LIN Z Q, YU Z Q. Prediction of deformation behavior and microstructure evolution in heavy forging by FEM[J]. The International Journal of Advanced Manufacturing Technology, 2009, 40(3-4):253-260. [8] LI A H, PANG J M, ZHAO J, et al. FEM-simulation of machining induced surface plastic deformation and microstructural texture evolution of Ti-6Al-4V alloy[J]. International Journal of Mechanical Sciences, 2017, 123:214-223. [9] 朱帅, 杨合, 郭良刚, 等. TA15钛合金环件径轴向辗轧成形全过程组织演变模拟[J]. 航空学报, 2014, 35(11):3145-3155. ZHU S, YANG H, GUO L G, et al. Simulation of microstructure evolution during the whole process of radial-axial rolling of TA15 titanium alloy ring[J]. Acta Aeronautica et Astronautica Sinica, 2014, 35(11):3145-3155(in Chinese). [10] WU G P. Application of BP and RBF neural network in classification prognosis of hepatitis B virus reactivation[J]. Journal of Electrical and Electronic Engineering, 2016, 4(2):35. [11] SUN Y, ZENG W D, ZHAO Y Q, et al. Development of constitutive relationship model of Ti600 alloy using artificial neural network[J]. Computational Materials Science, 2010, 48(3):686-691. [12] SUN Z C, YANG H, TANG Z. Microstructural evolution model of TA15 titanium alloy based on BP neural network method and application in isothermal deformation[J]. Computational Materials Science, 2010, 50(2):308-318. [13] LI M Q, ZHANG X Y. Modeling of the microstructure variables in the isothermal compression of TC11 alloy using fuzzy neural networks[J]. Materials Science and Engineering:A, 2011, 528(6):2265-2270. [14] SZKLINIARZ W, CHRAPON'SKI J, KOS'CIELNA A, et al. Substructure of titanium alloys after cyclic heat treatment[J]. Materials Chemistry and Physics, 2003, 81(2-3):538-541. [15] LI X F, CHEN X, LI B Y, et al. Grain refinement mechanism of Ti-55 titanium alloy by hydrogenation and dehydrogenation treatment[J]. Materials Characterization, 2019, 157:109919. [16] ANSARIAN I, SHAERI M H, EBRAHIMI M, et al. Microstructure evolution and mechanical behaviour of severely deformed pure titanium through multi directional forging[J]. Journal of Alloys and Compounds, 2019, 776:83-95. [17] ITO Y, HOSHI N, HAYAKAWA T, et al. Mechanical properties and biological responses of ultrafine-grained pure titanium fabricated by multi-directional forging[J]. Materials Science and Engineering:B, 2019, 245:30-36. [18] 纪小虎, 李萍, 时迎宾, 等. TA15钛合金等温多向锻造晶粒细化机理与力学性能[J]. 中国有色金属学报, 2019, 29(11):2515-2523. JI X H, LI P, SHI Y B, et al. Grain refinement mechanism and mechanical properties of TA15 alloy during multi-directional isothermal forging[J]. The Chinese Journal of Nonferrous Metals, 2019, 29(11):2515-2523(in Chinese). [19] ZHANG Z X, QU S J, FENG A H, et al. Achieving grain refinement and enhanced mechanical properties in Ti-6Al-4V alloy produced by multidirectional isothermal forging[J]. Materials Science and Engineering:A, 2017, 692:127-138. [20] ZHANG R, WANG D J, HUANG L J, et al. Deformation behaviors and microstructure evolution of TiBw/TA15 composite with novel network architecture[J]. Journal of Alloys and Compounds, 2017, 722:970-980. [21] KERMANPUR A, LEE P D, MCLEAN M, et al. Integrated modeling for the manufacture of aerospace discs:Grain structure evolution[J]. JOM, 2004, 56(3):72-78. [22] QUAN G Z, LUO G C, LIANG J T, et al. Modelling for the dynamic recrystallization evolution of Ti-6Al-4V alloy in two-phase temperature range and a wide strain rate range[J]. Computational Materials Science, 2015, 97:136-147. [23] WANG B F, WANG X Y, LI J. Formation and microstructure of ultrafine-grained titanium processed by multi-directional forging[J]. Journal of Materials Engineering and Performance, 2016, 25(6):2521-2527. |