[1] Luo W, Chu Y C, Ling K V. Inverse optimal adaptive control for attitude tracking of spacecraft[J]. IEEE Transactions on Automatic Control, 2005, 50(11): 1639-1654.
[2] Hu Q L, Friswell M I. Robust variable structure attitude control with L2-gain performance for a flexible space-craft including input saturation[J]. Proceedings of the Institution of Mechanical Engineers, Part I: Systems and Control Engineering, 2010, 224(2): 153-167.
[3] Chen Z, Huang J. Attitude tracking and disturbance rejec-tion of rigid spacecraft by adaptive control[J]. IEEE Transactions on Automatic Control, 2009, 54(3): 600-605.
[4] Ali I, Radice G, Kim J. Backstepping control design with actuator torque bound for spacecraft attitude maneuver[J]. Journal of Guidance, Control, and Dynamics, 2010, 33(1): 254-259.
[5] Wallsgrove R J, Akella M R. Globally stabilizing saturated attitude control in the presence of bounded unknown disturbances[J]. Journal of Guidance, Control, and Dynamics, 2005, 28(5): 957-963.
[6] Boskovic J D, Li S M, Mehra R K. Robust tracking control design for spacecraft under control input saturation[J]. Journal of Guidance, Control, and Dynamics, 2004, 27(4): 627-633.
[7] Zhang Y M, Jiang J. Bibliographical review on reconfigurable fault-tolerant control systems[J]. Annual Reviews in Control, 2008, 32(2): 229-252.
[8] Cieslak J, Henry D, Zolghadri A. Development of an active fault-tolerant flight control strategy[J]. Journal of Guidance, Control, and Dynamics, 2008, 31(1): 135-147.
[9] Zhang X D, Parisini T, Polycarpou M M. Adaptive fault-tolerant control of nonlinear uncertain systems: An information-based diagnostic approach[J]. IEEE Transactions on Automatic Control, 2004, 49(8): 1259-1274.
[10] Cai W C, Liao X H, Song Y D. Indirect robust adaptive fault-tolerant control for attitude tracking of spacecraft[J]. Journal of Guidance, Control, and Dynamics, 2008, 31(5): 1456-1463.
[11] Xiao B, Hu Q L, Zhang Y M. Fault-tolerant tracking control of spacecraft with attitude-only measurement under actuator failures [J]. Journal of Guidance, Control, and Dynamics, 2014, 37(3): 838-849.
[12] Hu Q L, Xiao B, Friswell M I. Robust fault-tolerant control for spacecraft attitude stabilisation subject to input saturation[J]. IET Control Theory & Applications, 2011, 5(2): 271-282.
[13] Hu Q L, Zhang Y M, Huo X, et al. Adaptive integral-type sliding mode control for spacecraft attitude maneuvering under actuator stuck failures[J]. Chinese Journal of Aeronautics, 2011, 24(1): 32-45.
[14] Bhat S P, Bernstein D S. Finite-time stability of continuous autonomous systems[J]. SIAM Journal on Control and Optimization, 2000, 38(3): 751-766.
[15] Ding S H, Li S H. Finite time tracking control of spacecraft attitude[J]. Acta Aeronautica et Astronautica Sinica, 2007, 28(3): 628-633 (in Chinese). 丁世宏, 李世华. 空间飞行器姿态的有限时间跟踪控制方法[J]. 航空学报, 2007, 28(3): 628-633.
[16] Zhu Z, Xia Y Q, Fu M Y. Attitude stabilization of rigid spacecraft with finite-time convergence[J]. International Journal of Robust and Nonlinear Control, 2011, 21(6): 686-702.
[17] Lu K F, Xia Y Q. Finite-time fault-tolerant control for rigid spacecraft with actuator saturations[J]. IET Control Theory & Applications, 2013, 7(11): 1529-1539.
[18] Wu S N, Radice G, Gao Y S, et al. Quaternion-based finite time control for spacecraft attitude tracking[J]. Acta Astronautica, 2011, 69(1): 48-58.
[19] Hu Q L, Jiang B Y, Shi Z. Novel terminal sliding mode based fault tolerant attitude control for spacecraft under actuator faults[J]. Acta Aeronautica et Astronautica Sinica, 2014, 35(1): 249-258 (in Chinese). 胡庆雷, 姜博严, 石忠. 基于新型终端滑模的航天器执行器故障容错姿态控制[J]. 航空学报, 2014, 35(1): 249-258.
[20] Sidi M J. Spacecraft dynamics and control[M]. London: Cambridge University Press, 1997. |